
Hung Ton-That

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7952290/publications.pdf Version: 2024-02-01

ΗυΝΟ ΤΟΝ-ΤΗΛΤ

#	Article	IF	CITATIONS
1	A cell wallâ€anchored glycoprotein confers resistance to cation stress in <i>Actinomyces oris</i> biofilms. Molecular Oral Microbiology, 2022, , .	1.3	3
2	The Fused Methionine Sulfoxide Reductase MsrAB Promotes Oxidative Stress Defense and Bacterial Virulence in Fusobacterium nucleatum. MBio, 2022, 13, e0302221.	1.8	9
3	A conserved signal-peptidase antagonist modulates membrane homeostasis of actinobacterial sortase critical for surface morphogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	2
4	Ribonuclease J-Mediated mRNA Turnover Modulates Cell Shape, Metabolism and Virulence in Corynebacterium diphtheriae. Microorganisms, 2021, 9, 389.	1.6	7
5	Sortase-assembled pili in <i>Corynebacterium diphtheriae</i> are built using a latch mechanism. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	7
6	Anchoring surface proteins to the bacterial cell wall by sortase enzymes: how it started and what we know now. Current Opinion in Microbiology, 2021, 60, 73-79.	2.3	18
7	Genetic and molecular determinants of polymicrobial interactions in <i>Fusobacterium nucleatum</i> . Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	36
8	Genetic Manipulation of Corynebacterium diphtheriae and Other Corynebacterium Species. Current Protocols in Microbiology, 2020, 58, e111.	6.5	3
9	Corynebacterium diphtheriae Virulence Analyses Using a Caenorhabditis elegans Model. Current Protocols in Microbiology, 2020, 58, e109.	6.5	3
10	Novel structure of the N-terminal helical domain of BibA, a group B streptococcus immunogenic bacterial adhesin. Acta Crystallographica Section D: Structural Biology, 2020, 76, 759-770.	1.1	8
11	Kinetics and Optimization of the Lysine–Isopeptide Bond Forming Sortase Enzyme from <i>Corynebacterium diphtheriae</i> . Bioconjugate Chemistry, 2020, 31, 1624-1634.	1.8	9
12	New Paradigms of Pilus Assembly Mechanisms in Gram-Positive Actinobacteria. Trends in Microbiology, 2020, 28, 999-1009.	3.5	24
13	Genetic Manipulation and Virulence Assessment of <i>Fusobacterium nucleatum</i> . Current Protocols in Microbiology, 2020, 57, e104.	6.5	20
14	A Cell-based Screen in Actinomyces oris to Identify Sortase Inhibitors. Scientific Reports, 2020, 10, 8520.	1.6	15
15	Cell-to-cell interaction requires optimal positioning of a pilus tip adhesin modulated by gram-positive transpeptidase enzymes. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 18041-18049.	3.3	21
16	Structure and Mechanism of LcpA, a Phosphotransferase That Mediates Glycosylation of a Gram-Positive Bacterial Cell Wall-Anchored Protein. MBio, 2019, 10, .	1.8	19
17	Antimicrobial sensing coupled with cell membrane remodeling mediates antibiotic resistance and virulence in <i>Enterococcus faecalis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 26925-26932.	3.3	58
18	Forward Genetic Dissection of Biofilm Development by Fusobacterium nucleatum: Novel Functions of Cell Division Proteins FtsX and EnvC. MBio, 2018, 9, .	1.8	41

#	Article	IF	CITATIONS
19	Structural Basis of a Thiol-Disulfide Oxidoreductase in the Hedgehog-Forming Actinobacterium Corynebacterium matruchotii. Journal of Bacteriology, 2018, 200, .	1.0	8
20	Transcriptome sequencing of the human pathogen Corynebacterium diphtheriae NCTC 13129 provides detailed insights into its transcriptional landscape and into DtxR-mediated transcriptional regulation. BMC Genomics, 2018, 19, 82.	1.2	26
21	In vitro reconstitution of sortase-catalyzed pilus polymerization reveals structural elements involved in pilin cross-linking. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E5477-E5486.	3.3	27
22	Protein Labeling via a Specific Lysine-Isopeptide Bond Using the Pilin Polymerizing Sortase from <i>Corynebacterium diphtheriae</i> . Journal of the American Chemical Society, 2018, 140, 8420-8423.	6.6	37
23	Molecular Level Insight into a Unique Surface Protein Glycosylation Pathway: Structure of the Actinomyces Oris LCP Enzyme that Mediates Surface Protein Glycosylation. Biophysical Journal, 2017, 112, 344a.	0.2	0
24	Reoxidation of the Thiol-Disulfide Oxidoreductase MdbA by a Bacterial Vitamin K Epoxide Reductase in the Biofilm-Forming Actinobacterium Actinomyces oris. Journal of Bacteriology, 2017, 199, .	1.0	7
25	Electron Transport Chain Is Biochemically Linked to Pilus Assembly Required for Polymicrobial Interactions and Biofilm Formation in the Gram-Positive Actinobacterium <i>Actinomyces oris</i> . MBio, 2017, 8, .	1.8	17
26	Evolution of substrate specificity in a retained enzyme driven by gene loss. ELife, 2017, 6, .	2.8	23
27	Role of the Emp Pilus Subunits of Enterococcus faecium in Biofilm Formation, Adherence to Host Extracellular Matrix Components, and Experimental Infection. Infection and Immunity, 2016, 84, 1491-1500.	1.0	24
28	Anchoring of LPXTG-Like Proteins to the Gram-Positive Cell Wall Envelope. Current Topics in Microbiology and Immunology, 2016, 404, 159-175.	0.7	32
29	Biogenesis of the Gram-positive bacterial cell envelope. Current Opinion in Microbiology, 2016, 34, 31-37.	2.3	53
30	Genetics and Cell Morphology Analyses of the Actinomyces oris srtA Mutant. Methods in Molecular Biology, 2016, 1440, 109-122.	0.4	5
31	A Type I Signal Peptidase Is Required for Pilus Assembly in the Gram-Positive, Biofilm-Forming Bacterium Actinomyces oris. Journal of Bacteriology, 2016, 198, 2064-2073.	1.0	15
32	Disulfide-Bond-Forming Pathways in Gram-Positive Bacteria. Journal of Bacteriology, 2016, 198, 746-754.	1.0	66
33	CnaA domains in bacterial pili are efficient dissipaters of large mechanical shocks. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 2490-2495.	3.3	60
34	A thiolâ€disulfide oxidoreductase of the <scp>G</scp> ramâ€positive pathogen <scp><i>C</i></scp> <i>orynebacterium diphtheriae</i> is essential for viability, pilus assembly, toxin production and virulence. Molecular Microbiology, 2015, 98, 1037-1050.	1.2	37
35	A Disulfide Bond-forming Machine Is Linked to the Sortase-mediated Pilus Assembly Pathway in the Gram-positive Bacterium Actinomyces oris. Journal of Biological Chemistry, 2015, 290, 21393-21405.	1.6	28
36	The Identification and Functional Characterization of WxL Proteins from Enterococcus faecium Reveal Surface Proteins Involved in Extracellular Matrix Interactions. Journal of Bacteriology, 2015, 197, 882-892.	1.0	28

#	Article	IF	CITATIONS
37	Assembly and Function of Corynebacterium diphtheriae Pili. , 2014, , 123-141.		8
38	Pilus hijacking by a bacterial coaggregation factor critical for oral biofilm development. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 3835-3840.	3.3	46
39	Lethality of sortase depletion inActinomyces oriscaused by excessive membrane accumulation of a surface glycoprotein. Molecular Microbiology, 2014, 94, 1227-1241.	1.2	45
40	A slow-forming isopeptide bond in the structure of the major pilin SpaD from <i>Corynebacterium diphtheriae</i> has implications for pilus assembly. Acta Crystallographica Section D: Biological Crystallography, 2014, 70, 1190-1201.	2.5	27
41	Surviving a Bumpy Ride in the Oropharynx: Bacterial Pili as Nano-Seatbelts that Dissipate Mechanical Energy. Biophysical Journal, 2014, 106, 578a.	0.2	0
42	Structure of <i>Streptococcus agalactiae</i> tip pilin GBS104: a model for GBS pili assembly and host interactions. Acta Crystallographica Section D: Biological Crystallography, 2013, 69, 1073-1089.	2.5	35
43	Pilus Gene Pool Variation and the Virulence of Corynebacterium diphtheriae Clinical Isolates during Infection of a Nematode. Journal of Bacteriology, 2013, 195, 3774-3783.	1.0	37
44	Contribution of Individual Ebp Pilus Subunits of Enterococcus faecalis OG1RF to Pilus Biogenesis, Biofilm Formation and Urinary Tract Infection. PLoS ONE, 2013, 8, e68813.	1.1	70
45	Visualization of Gram-positive Bacterial Pili. Methods in Molecular Biology, 2013, 966, 77-95.	0.4	17
46	Pangenomic Study of Corynebacterium diphtheriae That Provides Insights into the Genomic Diversity of Pathogenic Isolates from Cases of Classical Diphtheria, Endocarditis, and Pneumonia. Journal of Bacteriology, 2012, 194, 3199-3215.	1.0	142
47	Structural Determinants of Actinomyces sortase SrtC2 Required for Membrane Localization and Assembly of Type 2 Fimbriae for Interbacterial Coaggregation and Oral Biofilm Formation. Journal of Bacteriology, 2012, 194, 2531-2539.	1.0	25
48	A Model for Group B Streptococcus Pilus Type 1: The Structure of a 35-kDa C-Terminal Fragment of the Major Pilin GBS80. Journal of Molecular Biology, 2011, 407, 731-743.	2.0	35
49	The Crystal Structure Analysis of Group B Streptococcus Sortase C1: A Model for the "Lid―Movement upon Substrate Binding. Journal of Molecular Biology, 2011, 414, 563-577.	2.0	21
50	Cell surface display of minor pilin adhesins in the form of a simple heterodimeric assembly in <i>Corynebacterium diphtheriae</i> . Molecular Microbiology, 2011, 79, 1236-1247.	1.2	34
51	Two autonomous structural modules in the fimbrial shaft adhesin FimA mediate <i>Actinomyces</i> interactions with streptococci and host cells during oral biofilm development. Molecular Microbiology, 2011, 81, 1205-1220.	1.2	57
52	Dual Function of a Tip Fimbrillin of Actinomyces in Fimbrial Assembly and Receptor Binding. Journal of Bacteriology, 2011, 193, 3197-3206.	1.0	36
53	Adhesion by Pathogenic Corynebacteria. Advances in Experimental Medicine and Biology, 2011, 715, 91-103.	0.8	46
54	Structural Differences between the Streptococcus agalactiae Housekeeping and Pilus-Specific Sortases: SrtA and SrtC1. PLoS ONE, 2011, 6, e22995.	1.1	35

#	Article	IF	CITATIONS
55	Preliminary crystallographic study of the <i>Streptococcus agalactiae</i> sortases, sortase A and sortase C1. Acta Crystallographica Section F: Structural Biology Communications, 2010, 66, 1096-1100.	0.7	7
56	Purification, crystallization and halide phasing of aStreptococcus agalactiaebackbone pilin GBS80 fragment. Acta Crystallographica Section F: Structural Biology Communications, 2010, 66, 1666-1669.	0.7	5
57	The <i>Actinomyces oris</i> type 2 fimbrial shaft FimA mediates coâ€aggregation with oral streptococci, adherence to red blood cells and biofilm development. Molecular Microbiology, 2010, 77, 841-854.	1.2	70
58	Allelic Exchange in <i>Actinomyces oris</i> with mCherry Fluorescence Counterselection. Applied and Environmental Microbiology, 2010, 76, 5987-5989.	1.4	18
59	Characterization of the <i>ebp_{fm}</i> pilus-encoding operon of <i>Enterococcus faecium</i> and its role in biofilm formation and virulence in a murine model of urinary tract infection. Virulence, 2010, 1, 236-246.	1.8	98
60	Characterization of the ebp(fm) pilus-encoding operon of Enterococcus faecium and its role in biofilm formation and virulence in a murine model of urinary tract infection. Virulence, 2010, 1, 236-46.	1.8	51
61	The <i>Corynebacterium diphtheriae</i> shaft pilin SpaA is built of tandem Ig-like modules with stabilizing isopeptide and disulfide bonds. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 16967-16971.	3.3	107
62	Acyl Enzyme Intermediates in Sortase-Catalyzed Pilus Morphogenesis in Gram-Positive Bacteria. Journal of Bacteriology, 2009, 191, 5603-5612.	1.0	40
63	Pili in Gram-positive bacteria: assembly, involvement in colonization and biofilm development. Trends in Microbiology, 2008, 16, 33-40.	3.5	353
64	The molecular switch that activates the cell wall anchoring step of pilus assembly in gram-positive bacteria. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 14147-14152.	3.3	114
65	Sortase-Catalyzed Assembly of Distinct Heteromeric Fimbriae in Actinomyces naeslundii. Journal of Bacteriology, 2007, 189, 3156-3165.	1.0	96
66	Corynebacterium diphtheriae employs specific minor pilins to target human pharyngeal epithelial cells. Molecular Microbiology, 2007, 64, 111-124.	1.2	152
67	Housekeeping sortase facilitates the cell wall anchoring of pilus polymers in <i>Corynebacterium diphtheriae</i> . Molecular Microbiology, 2007, 66, 961-974.	1.2	119
68	An IgG-like Domain in the Minor Pilin GBS52 of Streptococcus agalactiae Mediates Lung Epithelial Cell Adhesion. Structure, 2007, 15, 893-903.	1.6	102
69	Assembly of Distinct Pilus Structures on the Surface of Corynebacterium diphtheriae. Journal of Bacteriology, 2006, 188, 1526-1533.	1.0	105
70	Type III Pilus of Corynebacteria: Pilus Length Is Determined by the Level of Its Major Pilin Subunit. Journal of Bacteriology, 2006, 188, 6318-6325.	1.0	78
71	Bacillus anthracis Sortase A (SrtA) Anchors LPXTG Motif-Containing Surface Proteins to the Cell Wall Envelope. Journal of Bacteriology, 2005, 187, 4646-4655.	1.0	76
72	Anchoring of Surface Proteins to the Cell Wall of Staphylococcus aureus. Journal of Biological Chemistry, 2004, 279, 37763-37770.	1.6	71

#	Article	IF	CITATIONS
73	The Secretion Signal of YopN, a Regulatory Protein of the Yersinia enterocolitica Type III Secretion Pathway. Journal of Bacteriology, 2004, 186, 6320-6324.	1.0	12
74	Sortases and pilin elements involved in pilus assembly of Corynebacterium diphtheriae. Molecular Microbiology, 2004, 53, 251-261.	1.2	173
75	Protein sorting to the cell wall envelope of Gram-positive bacteria. Biochimica Et Biophysica Acta - Molecular Cell Research, 2004, 1694, 269-278.	1.9	220
76	Crystal Structures of Staphylococcus aureus Sortase A and Its Substrate Complex. Journal of Biological Chemistry, 2004, 279, 31383-31389.	1.6	215
77	Assembly of pili in Gram-positive bacteria. Trends in Microbiology, 2004, 12, 228-234.	3.5	223
78	Assembly of pili on the surface of Corynebacterium diphtheriae. Molecular Microbiology, 2003, 50, 1429-1438.	1.2	320
79	An iron-regulated sortase anchors a class of surface protein during Staphylococcus aureus pathogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 2293-2298.	3.3	338
80	Anchoring of Surface Proteins to the Cell Wall of Staphylococcus aureus. Journal of Biological Chemistry, 2002, 277, 16241-16248.	1.6	193
81	Anchoring of Surface Proteins to the Cell Wall of Staphylococcus aureus. Journal of Biological Chemistry, 2002, 277, 7447-7452.	1.6	143
82	An embarrassment of sortases – a richness of substrates? Response. Trends in Microbiology, 2001, 9, 101-102.	3.5	9
83	Surface Protein Anchoring and Display in Staphylococci. Infectious Agents and Pathogenesis, 2001, , 155-177.	0.1	Ο
84	Sortase-catalysed anchoring of surface proteins to the cell wall of Staphylococcus aureus. Molecular Microbiology, 2001, 40, 1049-1057.	1.2	343
85	Assignment of the 1H, 13C and 15N signals of Sortase. Journal of Biomolecular NMR, 2001, 19, 379-380.	1.6	13
86	Structure of sortase, the transpeptidase that anchors proteins to the cell wall of Staphylococcus aureus. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 6056-6061.	3.3	273
87	Anchoring of Surface Proteins to the Cell Wall of Staphylococcus aureus. Journal of Biological Chemistry, 2000, 275, 9876-9881.	1.6	254
88	Purification and characterization of sortase, the transpeptidase that cleaves surface proteins of Staphylococcus aureus at the LPXTG motif. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 12424-12429.	3.3	521
89	Multiple Enzymatic Activities of the Murein Hydrolase from Staphylococcal Phage φ11. Journal of Biological Chemistry, 1999, 274, 15847-15856.	1.6	154
90	Anchor Structure of Staphylococcal Surface Proteins. Journal of Biological Chemistry, 1999, 274, 24316-24320.	1.6	133

#	Article	IF	CITATIONS
91	Staphylococcus aureus Sortase, an Enzyme that Anchors Surface Proteins to the Cell Wall. Science, 1999, 285, 760-763.	6.0	923
92	Anchor Structure of Staphylococcal Surface Proteins. Journal of Biological Chemistry, 1998, 273, 29143-29149.	1.6	65
93	Anchor Structure of Staphylococcal Surface Proteins. Journal of Biological Chemistry, 1998, 273, 29135-29142.	1.6	52
94	Anchor Structure of Staphylococcal Surface Proteins. Journal of Biological Chemistry, 1997, 272, 22285-22292.	1.6	120