Gustavo Ardila

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7952181/publications.pdf

Version: 2024-02-01

1040056 996975 16 553 9 15 citations h-index g-index papers 16 16 16 914 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Ultrathin Nanogenerators as Selfâ€Powered/Active Skin Sensors for Tracking Eye Ball Motion. Advanced Functional Materials, 2014, 24, 1163-1168.	14.9	163
2	Performance Optimization of Vertical Nanowireâ€based Piezoelectric Nanogenerators. Advanced Functional Materials, 2014, 24, 971-977.	14.9	139
3	Nanoâ€Newton Transverse Force Sensor Using a Vertical GaN Nanowire based on the Piezotronic Effect. Advanced Materials, 2013, 25, 883-888.	21.0	89
4	Performance of ZnO based piezo-generators under controlled compression. Semiconductor Science and Technology, 2017, 32, 064003.	2.0	34
5	Unveiling the Influence of Surface Fermi Level Pinning on the Piezoelectric Response of Semiconducting Nanowires. Advanced Electronic Materials, 2018, 4, 1700299.	5.1	25
6	Effects of thermal annealing on the structural and electrical properties of ZnO thin films for boosting their piezoelectric response. Journal of Alloys and Compounds, 2021, 870, 159512.	5.5	21
7	Dimensional Roadmap for Maximizing the Piezoelectrical Response of ZnO Nanowire-Based Transducers: Impact of Growth Method. Nanomaterials, 2021, 11, 941.	4.1	18
8	Low-Temperature Growth of ZnO Nanowires from Gravure-Printed ZnO Nanoparticle Seed Layers for Flexible Piezoelectric Devices. Nanomaterials, 2021, 11, 1430.	4.1	18
9	Morphology Transition of ZnO from Thin Film to Nanowires on Silicon and its Correlated Enhanced Zinc Polarity Uniformity and Piezoelectric Responses. ACS Applied Materials & Samp; Interfaces, 2020, 12, 29583-29593.	8.0	11
10	Optimization of dielectric matrix for ZnO nanowire based nanogenerators. Journal of Physics: Conference Series, 2016, 773, 012071.	0.4	8
11	A demonstration of the mechanical sensing capability of individually contacted vertical piezoelectric nanowires arranged in matrices. Nano Energy, 2019, 56, 859-867.	16.0	8
12	Size and Semiconducting Effects on the Piezoelectric Performances of ZnO Nanowires Grown onto Gravure-Printed Seed Layers on Flexible Substrates. Nanoenergy Advances, 2022, 2, 197-209.	7.7	8
13	High-frequency characterization and modeling of single metallic nanowires. EPJ Applied Physics, 2013, 63, 14406.	0.7	5
14	Tuneable polarity and enhanced piezoelectric response of ZnO thin films grown by metal–organic chemical vapour deposition through the flow rate adjustment. Materials Advances, 2022, 3, 498-513.	5.4	5
15	A de-embedding technique for metallic nanowires in microwave characterization. Microelectronic Engineering, 2013, 112, 241-248.	2.4	1
16	Scaling prospects in mechanical energy harvesting with piezo nanowires. EPJ Applied Physics, 2013, 63, 14407.	0.7	O