Tomasz Czujko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7952164/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The microstructure, mechanical properties and corrosion resistance of 316L stainless steel fabricated using laser engineered net shaping. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 677, 1-10.	2.6	356
2	Particle size, grain size and Î ³ -MgH2effects on the desorption properties of nanocrystalline commercial magnesium hydride processed by controlled mechanical milling. Nanotechnology, 2006, 17, 3856-3865.	1.3	220
3	Nanomaterials for Solid State Hydrogen Storage. Fuel Cells and Hydrogen Energy, 2009, , .	0.6	170
4	Catalytic effect of halide additives ball milled with magnesium hydride. International Journal of Hydrogen Energy, 2010, 35, 1706-1712.	3.8	170
5	Particle size effects on the desorption properties of nanostructured magnesium dihydride (MgH2) synthesized by controlled reactive mechanical milling (CRMM). Journal of Alloys and Compounds, 2006, 424, 356-364.	2.8	132
6	A study of the ZrF4, NbF5, TaF5, and TiCl3 influences on the MgH2 sorption properties. International Journal of Hydrogen Energy, 2011, 36, 12909-12917.	3.8	115
7	Thin wall tubes with Fe3Al/SS316L graded structure obtained by using laser engineered net shaping technology. Materials & Design, 2014, 63, 766-774.	5.1	89
8	Investigation of the hydrogen desorption properties of Mg+10wt.%X (X=V, Y, Zr) submicrocrystalline composites. Journal of Alloys and Compounds, 2006, 414, 240-247.	2.8	81
9	Characterization of Low-Symmetry Structures from Phase Equilibrium of Fe-Al System—Microstructures and Mechanical Properties. Materials, 2015, 8, 914-931.	1.3	75
10	The effects of time and temperature on the arrangement of anodic aluminum oxide nanopores. Materials Characterization, 2014, 91, 1-9.	1.9	69
11	Microstructures and hydrogen storage properties ofÂLa Ni Fe V Mn alloys. International Journal of Hydrogen Energy, 2017, 42, 27154-27164.	3.8	65
12	Fast Fourier transform based arrangement analysis of poorly organized alumina nanopores formed via self-organized anodization in chromic acid. Materials Letters, 2014, 117, 69-73.	1.3	62
13	Catalytic effects of various forms of nickel on the synthesis rate and hydrogen desorption properties of nanocrystalline magnesium hydride (MgH2) synthesized by controlled reactive mechanical milling (CRMM). Journal of Alloys and Compounds, 2007, 432, 217-231.	2.8	60
14	A new nanonickel catalyst for hydrogen storage in solid-state magnesium hydrides. International Journal of Hydrogen Energy, 2011, 36, 1159-1166.	3.8	53
15	Synthesis and hydrogen desorption properties of nanocomposite magnesium hydride with sodium borohydride (MgH2+NaBH4). Journal of Alloys and Compounds, 2007, 427, 291-299.	2.8	51
16	Porous graded FeAl intermetallic foams fabricated by sintering process using NaCl space holders. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 636, 407-414.	2.6	48
17	The effects of nanonickel additive on the decomposition of complex metal hydride LiAlH4 (lithium) Tj ETQq1 1	0.784314 r 3.8	gBT /Overlock
	Chatic and Dunamic Loading Debasian of TiCAM/ULanguages h Churchange Manufactured had a see		

¹⁸ Static and Dynamic Loading Behavior of Ti6Al4V Honeycomb Structures Manufactured by Laser Engineered Net Shaping (LENSTM) Technology. Materials, 2019, 12, 1225.

1.3 46

#	Article	IF	CITATIONS
19	Deformation of honeycomb cellular structures manufactured with Laser Engineered Net Shaping (LENS) technology under quasi-static loading: Experimental testing and simulation. Additive Manufacturing, 2019, 25, 307-316.	1.7	46
20	Structure and properties of the Fe3Al-type intermetallic alloy fabricated by laser engineered net shaping (LENS). Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 650, 374-381.	2.6	40
21	Mechano-chemical activation synthesis (MCAS) of nanocrystalline magnesium alanate hydride [Mg(AlH4)2] and its hydrogen desorption properties. Journal of Alloys and Compounds, 2007, 439, 302-311.	2.8	39
22	Overview of processing of nanocrystalline hydrogen storage intermetallics by mechanical alloying/milling. Materials and Manufacturing Processes, 2002, 17, 129-156.	2.7	38
23	Hydrogen desorption properties of MgH2 nanocomposites with nano-oxides and Inco micrometric- and nanometric-Ni. Journal of Alloys and Compounds, 2007, 446-447, 63-66.	2.8	38
24	A comparative study of electrochemical barrier layer thinning for anodic aluminum oxide grown on technical purity aluminum. Journal of Electroanalytical Chemistry, 2015, 741, 80-86.	1.9	37
25	Microstructural evolution during controlled ball milling of (Mg2Ni+MgNi2) intermetallic alloy. Journal of Alloys and Compounds, 2003, 350, 332-339.	2.8	33
26	Mechanochemical synthesis of nanostructured chemical hydrides in hydrogen alloying mills. Journal of Alloys and Compounds, 2007, 434-435, 743-746.	2.8	33
27	Fabrication of copper nanowires via electrodeposition in anodic aluminum oxide templates formed by combined hard anodizing and electrochemical barrier layer thinning. Journal of Electroanalytical Chemistry, 2018, 809, 59-66.	1.9	31
28	The effect of MgNi2 intermetallic compound on nanostructurization and amorphization of Mg–Ni alloys processed by controlled mechanical milling. Journal of Alloys and Compounds, 2003, 354, 281-295.	2.8	29
29	Thermal stability of Vale Inco nanonometric nickel as a catalytic additive for magnesium hydride (MgH2). International Journal of Hydrogen Energy, 2009, 34, 8603-8610.	3.8	29
30	Fracture toughness of intermetallic compacts consolidated from nanocrystalline powders. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2001, 300, 1-11.	2.6	28
31	Synthesis of nanocomposite hydrides for solid-state hydrogen storage by controlled mechanical milling techniques. Journal of Alloys and Compounds, 2009, 483, 252-255.	2.8	28
32	Superelastic Effect in NiTi Alloys Manufactured Using Electron Beam and Focused Laser Rapid Manufacturing Methods. Journal of Materials Engineering and Performance, 2020, 29, 4463-4473.	1.2	28
33	Microstructural characterization of laser-cladded NiCrAlY coatings on Inconel 625 Ni-based superalloy and 316L stainless steel. Surface and Coatings Technology, 2020, 387, 125317.	2.2	27
34	Feasibility study of the direct mechano-chemical synthesis of nanostructured magnesium tetrahydroaluminate (alanate) [Mg(AlH4)2] complex hydride. Nanotechnology, 2005, 16, 2261-2274.	1.3	26
35	The effect of ball milling under hydrogen and argon on the desorption properties of MgH2 covered with a layer of Mg(OH)2. Journal of Alloys and Compounds, 2010, 493, L29-L32.	2.8	26
36	Nanostructured Anodic Copper Oxides as Catalysts in Electrochemical and Photoelectrochemical Reactions. Catalysts, 2020, 10, 1338.	1.6	25

#	Article	IF	CITATIONS
37	Microstructure and hydrogen storage capacity of magnesium hydride with zirconium and niobium fluoride additives after cyclic loading. Journal of Alloys and Compounds, 2011, 509, S616-S620.	2.8	23
38	Cold-work induced phenomena in B2 FeAl intermetallics. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2002, 329-331, 213-221.	2.6	21
39	Processing by controlled mechanical milling of nanocomposite powders Mg + X (X = Co, Cr, Mo, V, Y,) Tj ETQq1 1	0,784314 2.8	rgBT /Overl
40	Mechanical and Electrical Properties of Epoxy Composites Modified by Functionalized Multiwalled Carbon Nanotubes. Materials, 2021, 14, 3325.	1.3	21
41	Anodization of FeAl intermetallic alloys for bandgap tunable nanoporous mixed aluminum-iron oxide. Journal of Electroanalytical Chemistry, 2016, 771, 37-44.	1.9	20
42	Multi-axial forging of Fe3Al-base intermetallic alloy and its mechanical properties. Journal of Materials Science, 2017, 52, 2902-2914.	1.7	20
43	The critical parameters in <i>in-situ</i> MgB2 wires and tapes with <i>ex-situ</i> MgB2 barrier after hot isostatic pressure, cold drawing, cold rolling and doping. Journal of Applied Physics, 2015, 117, .	1.1	19
44	The Tribaloy T-800 Coatings Deposited by Laser Engineered Net Shaping (LENSTM). Materials, 2019, 12, 1366.	1.3	19
45	The composites of magnesium hydride and iron-titanium intermetallic. International Journal of Hydrogen Energy, 2011, 36, 1177-1183.	3.8	18
46	Identification of Mechanical Properties for Titanium Alloy Ti-6Al-4V Produced Using LENS Technology. Materials, 2019, 12, 886.	1.3	18
47	Fabrication and geometric characterization of highly-ordered hexagonally arranged arrays of nanoporous anodic alumina. Polish Journal of Chemical Technology, 2014, 16, 63-69.	0.3	17
48	Hot isostatic pressing of multifilamentary MgB2wires in solid state media for large scale application. Superconductor Science and Technology, 2015, 28, 045009.	1.8	17
49	Mg2(Fe, Cr, Ni)HX complex hydride synthesis from austenitic stainless steel and magnesium hydride. International Journal of Hydrogen Energy, 2020, 45, 19440-19454.	3.8	16
50	Characterization of arrangement and geometry of porous anodic alumina formed by one-step anodization of Al-1 wt% Si thin films. Surface and Coatings Technology, 2016, 307, 359-365.	2.2	15
51	The influence of ball milling process on hydrogenation properties of MgH2–FeTiHx composites. Journal of Alloys and Compounds, 2011, 509, S608-S611.	2.8	14
52	Microstructure and Properties of Inconel 625 Fabricated Using Two Types of Laser Metal Deposition Methods. Materials, 2020, 13, 5050.	1.3	14
53	Quantitative fast Fourier transform based arrangement analysis of porous anodic oxide formed by self-organized anodization of FeAl intermetallic alloy. Materials Letters, 2016, 164, 176-179.	1.3	13
54	Fabrication and Characterization of Highly Porous FeAlâ€Based Intermetallics by Thermal Explosion Reaction. Advanced Engineering Materials, 2019, 21, 1801110.	1.6	12

#	Article	IF	CITATIONS
55	Influence of the lamella structure and high isostatic pressure on the critical current density in in situ MgB2 wires without a barrier. Journal of Alloys and Compounds, 2019, 776, 636-645.	2.8	12
56	Iron fluorides assisted dehydrogenation and hydrogenation of MgH2 studied by Mössbauer spectroscopy. Journal of Alloys and Compounds, 2011, 509, 5368-5372.	2.8	11
57	The application of Pettifor structure maps to binary metal hydrides. International Journal of Hydrogen Energy, 2014, 39, 398-405.	3.8	11
58	The effect of He + irradiation on hardness and elastic modulus of Fe-Cr–40Âwt.% TiB 2 composite rod designed for neutron absorbing. Journal of Alloys and Compounds, 2017, 711, 111-120.	2.8	11
59	The effect of atomic volume on the hydrogen storage capacity of hexagonal metals/intermetallics. Scripta Materialia, 2002, 46, 531-535.	2.6	10
60	Composite behaviour of MgH2 and complex hydride mixtures synthesized by ball milling. Journal of Alloys and Compounds, 2011, 509, S604-S607.	2.8	10
61	The kinetics of non-isothermal iron and aluminum powder mixtures sintering in protective atmosphere. Journal of Alloys and Compounds, 2013, 549, 92-99.	2.8	10
62	New Aspects of MgH2 Morphological and Structural Changes during High-Energy Ball Milling. Materials, 2020, 13, 4550.	1.3	10
63	Nanomaterials for Hydrogen Storage Produced by Ball Milling. Canadian Metallurgical Quarterly, 2009, 48, 11-25.	0.4	9
64	Superelastic Behavior of Ti-Nb Alloys Obtained by the Laser Engineered Net Shaping (LENS) Technique. Materials, 2020, 13, 2827.	1.3	9
65	Severe Plastic Deformation of Fe-22Al-5Cr Alloy by Cross-Channel Extrusion with Back Pressure. Materials, 2018, 11, 2214.	1.3	8
66	The Application of Globular Water-Atomized Iron Powders for Additive Manufacturing by a LENS Technique. Materials, 2018, 11, 843.	1.3	8
67	Investigation of oxide nanowires growth on copper via passivation in NaOH aqueous solution. Surfaces and Interfaces, 2019, 14, 15-18.	1.5	8
68	Hydrogenation Ability of Mg-Li Alloys. Energies, 2020, 13, 2080.	1.6	8
69	Formation of Nanoporous Mixed Aluminum-Iron Oxides by Self-Organized Anodizing of FeAl3 Intermetallic Alloy. Materials, 2019, 12, 2299.	1.3	7
70	The significant influence of packing density of unreacted Mg+2B mixture and heat treatment conditions on some of critical parameters for MgB2/Fe wires. Journal of Alloys and Compounds, 2021, 889, 161665.	2.8	7
71	Quantitative measurements of the chemical composition of unprepared samples, using a reflectron mass analyzer with a microchannelplate detector assembly. Review of Scientific Instruments, 2000, 71, 1425-1428.	0.6	6
72	A novel Fe–Cr–Nb matrix composite containing the TiB2 neutron absorber synthesized by mechanical alloying and final hot isostatic pressing (HIP) in the Ti-tubing. Journal of Alloys and Compounds, 2016, 674, 425-434.	2.8	6

#	Article	IF	CITATIONS
73	The Microstructure Evolution of a Fe3Al Alloy during the LENS Process. Materials, 2018, 11, 390.	1.3	6
74	The Characterization of Stress Corrosion Cracking in the AE44 Magnesium Casting Alloy Using Quantitative Fractography Methods. Materials, 2019, 12, 4125.	1.3	6
75	Formation of nanoporous oxide by self-organized anodizing of FeAl intermetallic alloy in oxalic acid solution containing glycol. Materials Letters, 2018, 224, 9-12.	1.3	5
76	The Effect of the Traverse Feed Rate on the Microstructure and Mechanical Properties of Laser Deposited Fe3Al (Zr,B) Intermetallic Alloy. Materials, 2018, 11, 792.	1.3	5
77	Fabrication of highly porous TiAl3 intermetallics using titanium hydride as a reactant in the thermal explosion reaction. Journal of Materials Research, 2018, 33, 2680-2688.	1.2	5
78	Magnesium-based complex hydride mixtures synthesized from stainless steel and magnesium hydride with subambient temperature hydrogen absorption capability. Journal of Alloys and Compounds, 2022, 901, 163489.	2.8	5
79	Applications of cluster analysis in the quantitative estimation of similarities in geometrical characteristics of grains in polycrystalline materials. Materials Characterization, 1994, 32, 105-118.	1.9	3
80	Structural and mechanical properties of CO ₂ â€laser welded joints in difficultâ€toâ€weld metals. Welding International, 1996, 10, 257-261.	0.3	3
81	Mechanochemical Activation and Synthesis of Nanomaterials for Hydrogen Storage and Conversion in Electrochemical Power Sources. Journal of Nanoscience and Nanotechnology, 2009, 9, 4048-4055.	0.9	3
82	Nanoporous Anodic Aluminum-Iron Oxide with a Tunable Band Gap Formed on the FeAl3 Intermetallic Phase. Materials, 2020, 13, 3471.	1.3	3
83	Superconducting Properties and Microstructure Changes after Heat Treatment of In Situ MgB2 Wires with Ex Situ MgB2 Barriers. Journal of Superconductivity and Novel Magnetism, 2022, 35, 1491-1497.	0.8	3
84	Mechanical and Thermal Dehydrogenation of the Mechano-Chemically Synthesized Calcium Alanate (Ca(AlH4)2) and Lithium Chloride (LiCl) Composite. Materials, 2015, 8, 3479-3490.	1.3	2
85	Mechanosynthesis of Nanocrystalline MgB ₂ Ceramic Powders in Hydrogen Alloying Mills via Amorphous Hydride Intermediate. Advances in Science and Technology, 2006, 45, 309.	0.2	1
86	Nanonickel Catalyst for Kinetic Destabilization of LiAlH ₄ (Lithium Alanate) for Facile Discharge of Hydrogen. Advances in Science and Technology, 2010, 72, 182-187.	0.2	1
87	The role of Mg2FeH6 formation on the hydrogenation properties of MgH2-FeFx composites. Open Chemistry, 2011, 9, 701-705.	1.0	1
88	Influence of Amorphous Boron Grain Size, High Isostatic Pressure, Annealing Temperature, and Filling Density of Unreacted Material on Structure, Critical Parameters, n-Value, and Engineering Critical Current Density in MgB2 Wires. Materials, 2021, 14, 3600.	1.3	1
89	Effect of Heat Treatments under High Isostatic Pressure on the Transport Critical Current Density at 4.2 K and 20 K in Doped and Undoped MgB2 Wires. Materials, 2021, 14, 5152.	1.3	1
90	Evaluation of the Possibility of Applying Spatial 3D Imaging Using X-Ray Computed Tomography Reconstruction Methods for Quantitative Analysis of Multiphase Materials / Rentgenowska Analiza IloÅ›ciowa MateriaÅ,ów Wielofazowych Z Wykorzystaniem Przestrzennego Obrazowania (3D) Przy Użyciu Metod Rekonstrukcji Tomografii Komputerowej. Archives of Metallurgy and Materials, 2015, 60, 2663-2670.	0.6	0

#	Article	IF	CITATIONS
91	Nanostructured Hydrides for Solid State Hydrogen Storage for Vehicular Applications. Progress in Green Energy, 2011, , 223-286.	0.0	0