
Anil Kumar Pr

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7952162/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Optimization of gelatin–alginate composite bioink printability using rheological parameters: a systematic approach. Biofabrication, 2018, 10, 034106.	3.7	336
2	A Photoâ€Crosslinkable Kidney ECMâ€Derived Bioink Accelerates Renal Tissue Formation. Advanced Healthcare Materials, 2019, 8, e1800992.	3.9	162
3	Preparation, characterization and biological evaluation of curcumin loaded alginate aldehyde–gelatin nanogels. Materials Science and Engineering C, 2016, 68, 251-257.	3.8	111
4	Strategies to Tune Electrospun Scaffold Porosity for Effective Cell Response in Tissue Engineering. Journal of Functional Biomaterials, 2019, 10, 30.	1.8	103
5	Gum arabic-curcumin conjugate micelles with enhanced loading for curcumin delivery to hepatocarcinoma cells. Carbohydrate Polymers, 2015, 134, 167-174.	5.1	88
6	Characterization and in vitro evaluation of electrospun chitosan/polycaprolactone blend fibrous mat for skin tissue engineering. Journal of Materials Science: Materials in Medicine, 2015, 26, 5352.	1.7	72
7	Nanogels based on alginic aldehyde and gelatin by inverse miniemulsion technique: synthesis and characterization. Carbohydrate Polymers, 2015, 119, 118-125.	5.1	72
8	Modified dextran cross-linked electrospun gelatin nanofibres for biomedical applications. Carbohydrate Polymers, 2014, 114, 467-475.	5.1	64
9	Graphene oxide decorated electrospun gelatin nanofibers: Fabrication, properties and applications. Materials Science and Engineering C, 2016, 64, 11-19.	3.8	64
10	Galactosylated alginate-curcumin micelles for enhanced delivery of curcumin to hepatocytes. International Journal of Biological Macromolecules, 2016, 86, 1-9.	3.6	47
11	Galactosylated pullulan–curcumin conjugate micelles for site specific anticancer activity to hepatocarcinoma cells. Colloids and Surfaces B: Biointerfaces, 2015, 133, 347-355.	2.5	43
12	Bioengineered corneal epithelial cell sheet from mesenchymal stem cells—A functional alternative to limbal stem cells for ocular surface reconstruction. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2020, 108, 1033-1045.	1.6	31
13	N-Isopropylacrylamide-co-glycidylmethacrylate as a Thermoresponsive Substrate for Corneal Endothelial Cell Sheet Engineering. BioMed Research International, 2014, 2014, 1-7.	0.9	25
14	A Cytocompatible Poly(<i>N</i> -isopropylacrylamide- <i>co</i> -glycidylmethacrylate) Coated Surface as New Substrate for Corneal Tissue Engineering. Journal of Bioactive and Compatible Polymers, 2010, 25, 58-74.	0.8	22
15	Alternate method for grafting thermoresponsive polymer for transferringin vitro cell sheet structures. Journal of Applied Polymer Science, 2007, 105, 2245-2251.	1.3	17
16	Evaluation of Polypropylene Hollow-Fiber Prototype Bioreactor for Bioartificial Liver. Tissue Engineering - Part A, 2013, 19, 1056-1066.	1.6	13
17	Differential expression of transcription factors NF-κB and STAT3 in periodontal ligament fibroblasts and gingiva of healthy and diseased individuals. Archives of Oral Biology, 2017, 82, 19-26.	0.8	13
18	Selfâ€assembling polymeric dendritic peptide as functional osteogenic matrix for periodontal regeneration scaffolds—an in vitro study. Journal of Periodontal Research, 2019, 54, 468-480.	1.4	12

Anil Kumar Pr

#	Article	IF	CITATIONS
19	Three-dimensional bioprinting for organ bioengineering: promise and pitfalls. Current Opinion in Organ Transplantation, 2018, 23, 649-656.	0.8	11
20	Porous composites of hydroxyapatiteâ€filled poly[ethyleneâ€ <i>co</i> â€(vinyl acetate)] for tissue engineering. Polymer International, 2011, 60, 51-58.	1.6	10
21	Intelligent Thermoresponsive Substrate from Modified Overhead Projection Sheet as a Tool for Construction and Support of Cell Sheets <i>In Vitro</i> . Tissue Engineering - Part C: Methods, 2011, 17, 181-191.	1.1	9
22	Sol–gel nanoporous silica as substrate for immobilization of conjugated biomolecules for application as fluorescence resonance energy transfer (FRET) based biosensor. Sensors and Actuators B: Chemical, 2013, 185, 252-257.	4.0	9
23	Simple and efficient approach for improved cytocompatibility and faster degradation of electrospun polycaprolactone fibers. Polymer Bulletin, 2019, 76, 1333-1347.	1.7	9
24	Direct cell imprint lithography in superconductive carbon black polymer composites: process optimization, characterization and <i>in vitro</i> toxicity analysis. Bioinspiration and Biomimetics, 2020, 15, 016002.	1.5	9
25	Cell patch seeding and functional analysis of cellularized scaffolds for tissue engineering. Biomedical Materials (Bristol), 2007, 2, 48-54.	1.7	8
26	Styrylcyanine-based ratiometric and tunable fluorescent pH sensors. RSC Advances, 2014, 4, 56063-56067.	1.7	8
27	A non-adhesive hybrid scaffold from gelatin and gum Arabic as packed bed matrix for hepatocyte perfusion culture. Materials Science and Engineering C, 2015, 46, 341-347.	3.8	7
28	Drug loaded microbeads entrapped electrospun mat for wound dressing application. Journal of Materials Science: Materials in Medicine, 2017, 28, 88.	1.7	7
29	Highâ€ŧhroughput production of liver parenchymal microtissues and enrichment of organâ€specific functions in gelatin methacrylamide microenvironment. Biotechnology and Bioengineering, 2022, 119, 1018-1032.	1.7	7
30	Peripheral Blood As a Source of Stem Cells for Regenerative Medicine: Emphasis Towards Corneal Epithelial Reconstruction—An In Vitro Study. Tissue Engineering and Regenerative Medicine, 2020, 17, 495-510.	1.6	6
31	A novel thermoresponsive graft copolymer containing phosphorylated HEMA for generating detachable cell layers. Journal of Applied Polymer Science, 2010, 115, 52-62.	1.3	4
32	A Novel, Single Step, Highly Sensitive <i>In-Vitro</i> Cell-Based Metabolic Assay Using Honeycomb Microporous Polymer Membranes. Journal of Biomedical Nanotechnology, 2015, 11, 590-599.	0.5	4
33	Biofunctionalised polycaprolactone fibrous mat as a transfer tool for cell sheet engineering. Fibers and Polymers, 2017, 18, 2094-2101.	1.1	3
34	Synthetic Osteogenic Matrix using Polymeric Dendritic Peptides for treating Human Periodontal defects – design and in vitro evaluation. Materials Today: Proceedings, 2019, 15, 199-216.	0.9	3
35	Intelligent Biomaterials for Tissue Engineering and Biomedical Applications: Current Landscape and Future Prospects. , 2021, , 535-560.		3
36	Standardizing transdifferentiation of rabbit bone marrow mesenchymal stem cells to corneal lineage by simulating corneo-limbal cues. Journal of Stem Cell Research and Medicine, 2017, 2, .	0.7	3

Anil Kumar Pr

#	Article	IF	CITATIONS
37	3D Bioprinting in Tissue Engineering and Regenerative Medicine: Current Landscape and Future Prospects. , 2021, , 561-580.		2
38	Radical scavenging gelatin methacrylamide based bioink formulation for three dimensional bioprinting of parenchymal liver construct. Bioprinting, 2022, 27, e00214.	2.9	2
39	A flexible thermoresponsive cell culture substrate for direct transfer of keratinocyte cell sheets. Biomedical Materials (Bristol), 2017, 12, 065012.	1.7	1
40	Dental tissue engineering. , 2022, , 493-529.		1
41	Three-dimensional bioprinting of tissues and organs. , 2022, , 135-150.		0