Pinar Camurlu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7951805/publications.pdf

Version: 2024-02-01

69 papers

1,723 citations

257101 24 h-index 288905 40 g-index

70 all docs

70 docs citations

70 times ranked 1384 citing authors

#	Article	IF	CITATIONS
1	Fast Switching Triphenylamine-Based Electrochromic Polymers with Fluorene Core: Electrochemical Synthesis and Optoelectronic Properties. Journal of the Electrochemical Society, 2022, 169, 026511.	1.3	7
2	Biosensing Efficiency of Nanocarbon-Reinforced Polyacrylonitrile Nanofibrous Matrices. Journal of the Electrochemical Society, 2022, 169, 020548.	1.3	7
3	Multichromic metallopolymers of poly(2,5-dithienylpyrrole)s derived through tethering of ruthenium(II) bipiridyl complex. Electrochimica Acta, 2022, 424, 140562.	2.6	6
4	Traceâ€Level Phenolics Detection Based on Composite PANâ€MWCNTs Nanofibers. ChemBioChem, 2022, 23, .	1.3	2
5	Ambipolar, multichromic metallopolymers of poly(3,4-ethylenedioxythiophene). Dyes and Pigments, 2022, 205, 110526.	2.0	O
6	Functional Biosensing Platform for Urea Detection: Copolymer of Fc-Substituted 2,5-di(thienyl)pyrrole and 3,4-ethylenedioxythiophene. Journal of the Electrochemical Society, 2021, 168, 067513.	1.3	3
7	Facile copper-based nanofibrous matrix for glucose sensing: Eenzymatic vs. non-enzymatic. Bioelectrochemistry, 2021, 140, 107751.	2.4	11
8	Next step in 2nd generation glucose biosensors: Ferrocene-loaded electrospun nanofibers. Materials Science and Engineering C, 2021, 128, 112270.	3.8	14
9	Tuning of electrochromic properties of electrogenerated polythiophenes through Ru(II) complex tethering and backbone derivatization. Electrochimica Acta, 2020, 329, 135134.	2.6	17
10	The effect of montmorillonite functionalization on the performance of glucose biosensors based on composite montmorillonite/PAN nanofibers. Electrochimica Acta, 2020, 353, 136484.	2.6	29
11	Reagentless Amperometric Glucose Biosensors: Ferrocene-Tethering and Copolymerization. Journal of the Electrochemical Society, 2020, 167, 107507.	1.3	9
12	Reviewâ€"Functional Platforms for (Bio)sensing: Thiophene-Pyrrole Hybrid Polymers. Journal of the Electrochemical Society, 2020, 167, 037557.	1.3	28
13	The effect of copolymerization and carbon nanoelements on the performance of poly(2,5-di(thienyl)pyrrole) biosensors. Materials Science and Engineering C, 2019, 105, 110069.	3.8	8
14	Utilization of enzyme extract self-encapsulated within polypyrrole in sensitive detection of catechol. Enzyme and Microbial Technology, 2019, 128, 34-39.	1.6	18
15	Sensitivity enhancement for microbial biosensors through cell Self-Coating with polypyrrole. International Journal of Polymeric Materials and Polymeric Biomaterials, 2019, 68, 1058-1067.	1.8	15
16	Solution processable fluorene-extended Indeno[1,2-b]anthracenes: Synthesis, characterization and photophysical properties. Dyes and Pigments, 2018, 156, 82-90.	2.0	3
17	An amperometric glucose biosensor based on PEDOT nanofibers. RSC Advances, 2018, 8, 19724-19731.	1.7	48
18	Post Polymerization Functionalization of a Soluble Poly(2,5-dithienylpyrrole) Derivative via Click Chemistry. Journal of the Electrochemical Society, 2017, 164, H430-H436.	1.3	5

#	Article	IF	CITATIONS
19	Construction of ferrocene modified conducting polymer based amperometric urea biosensor. Enzyme and Microbial Technology, 2017, 102, 53-59.	1.6	30
20	Utilization of Polypyrrole Nanofibers in Glucose Detection. Journal of the Electrochemical Society, 2017, 164, B585-B590.	1.3	14
21	Glucose biosensor based on whole cells of Aspergillus niger MIUG 34 coated with polypyrrole. Journal of Biotechnology, 2017, 256, S55-S56.	1.9	3
22	Ferrocene clicked polypyrrole derivatives: effect of spacer group on electrochemical properties and post-polymerization functionalization. Designed Monomers and Polymers, 2016, 19, 212-221.	0.7	2
23	Optoelectronic properties of thiazoleâ€based polythiophenes. Journal of Applied Polymer Science, 2015, 132, .	1.3	3
24	Multichromic polymers based on pyrene clicked thienylpyrrole. Polymer International, 2015, 64, 758-765.	1.6	14
25	Calixarene assembly with enhanced photocurrents using P(SNS-NH2)/CdS nanoparticle structure modified Au electrode systems. Physical Chemistry Chemical Physics, 2015, 17, 19911-19918.	1.3	7
26	Optoelectronic Properties of Poly(2,5-dithienylpyrrole)s with Fluorophore Groups. Journal of the Electrochemical Society, 2015, 162, H867-H876.	1.3	15
27	Electrosyntheses of anthracene clicked poly(thienylpyrrole)s andÂinvestigation of their electrochromic properties. Polymer, 2015, 73, 122-130.	1.8	29
28	Electrochromic Polymers. , 2015, , 666-676.		0
28	Electrochromic Polymers. , 2015, , 666-676. Polypyrrole derivatives for electrochromic applications. RSC Advances, 2014, 4, 55832-55845.	1.7	0
		1.7	
29	Polypyrrole derivatives for electrochromic applications. RSC Advances, 2014, 4, 55832-55845. Both p and n-Dopable, Multichromic, Napthalineimide Clicked Poly(2,5-dithienylpyrrole) Derivatives.		174
30	Polypyrrole derivatives for electrochromic applications. RSC Advances, 2014, 4, 55832-55845. Both p and n-Dopable, Multichromic, Napthalineimide Clicked Poly(2,5-dithienylpyrrole) Derivatives. Journal of the Electrochemical Society, 2013, 160, H560-H567. Clickable, versatile poly(2,5-dithienylpyrrole) derivatives. Reactive and Functional Polymers, 2013, 73,	1.3	174 17
29 30 31	Polypyrrole derivatives for electrochromic applications. RSC Advances, 2014, 4, 55832-55845. Both p and n-Dopable, Multichromic, Napthalineimide Clicked Poly(2,5-dithienylpyrrole) Derivatives. Journal of the Electrochemical Society, 2013, 160, H560-H567. Clickable, versatile poly(2,5-dithienylpyrrole) derivatives. Reactive and Functional Polymers, 2013, 73, 847-853.	1.3 2.0	174 17 30
29 30 31 32	Polypyrrole derivatives for electrochromic applications. RSC Advances, 2014, 4, 55832-55845. Both p and n-Dopable, Multichromic, Napthalineimide Clicked Poly(2,5-dithienylpyrrole) Derivatives. Journal of the Electrochemical Society, 2013, 160, H560-H567. Clickable, versatile poly(2,5-dithienylpyrrole) derivatives. Reactive and Functional Polymers, 2013, 73, 847-853. Multichromic, ferrocene clicked poly(2,5-dithienylpyrrole)s. Journal of Polymer Research, 2013, 20, 1. Optoelectronic Properties and Electrochromic Device Application of Novel Pyrazole Based Conducting Polymers. Journal of Macromolecular Science - Pure and Applied Chemistry, 2013, 50,	1.3 2.0 1.2	174 17 30 24
30 31 32 33	Polypyrrole derivatives for electrochromic applications. RSC Advances, 2014, 4, 55832-55845. Both p and n-Dopable, Multichromic, Napthalineimide Clicked Poly(2,5-dithienylpyrrole) Derivatives. Journal of the Electrochemical Society, 2013, 160, H560-H567. Clickable, versatile poly(2,5-dithienylpyrrole) derivatives. Reactive and Functional Polymers, 2013, 73, 847-853. Multichromic, ferrocene clicked poly(2,5-dithienylpyrrole)s. Journal of Polymer Research, 2013, 20, 1. Optoelectronic Properties and Electrochromic Device Application of Novel Pyrazole Based Conducting Polymers. Journal of Macromolecular Science - Pure and Applied Chemistry, 2013, 50, 588-595.	1.3 2.0 1.2	174 17 30 24

#	Article	IF	CITATIONS
37	A Solutionâ€processible, nâ€dopable polypyrrole derivative. Journal of Polymer Science Part A, 2012, 50, 4847-4853.	2.5	18
38	Fast switching, high contrast multichromic polymers from alkyl-derivatized dithienylpyrrole and 3,4-ethylenedioxythiophene. Electrochimica Acta, 2012, 61, 50-56.	2.6	42
39	Novel ferrocene derivatized poly(2,5-dithienylpyrrole)s: Optoelectronic properties, electrochemical copolymerization. Electrochimica Acta, 2012, 63, 245-250.	2.6	58
40	Solution processable donor acceptor type dibenzothiophen-S,S-dioxide derivatives for electrochromic applications. Journal of Electroanalytical Chemistry, 2011, 661, 359-366.	1.9	12
41	Electronic and optical properties of dibenzothiophen-S,S-dioxide and EDOT based conducting polymers. Synthetic Metals, 2011, 161, 1898-1905.	2.1	24
42	Poly(dibromophenylene oxide)s Through Atom Transfer Radical Rearrangement Polymerization of Various Transition Metal Complexes. Journal of Macromolecular Science - Pure and Applied Chemistry, 2009, 46, 321-330.	1.2	0
43	Electrochromic properties of a copolymer of 1â€4â€di[2,5â€di(2â€thienyl)â€1Hâ€1â€pyrrolyl]benzene with EDOT Journal of Applied Polymer Science, 2009, 112, 1082-1087.	- 1.3	19
44	A Novel Copolymer: Starchâ€∢b> <i>g</i> â€Polyvinylpyrrolidone. Starch/Staerke, 2009, 61, 267-274.	1.1	9
45	Polythiophene–polyoxyethylene copolymer in polyfluorene-based polymer blends for light-emitting devices. Synthetic Metals, 2009, 159, 41-44.	2.1	19
46	A soluble conducting polymer of 4-(2,5-di(thiophen-2-yl)-1H-pyrrol-1-yl)benzenamine and its multichromic copolymer with EDOT. Journal of Electroanalytical Chemistry, 2008, 612, 247-256.	1.9	124
47	A fast switching, low band gap, p- and n-dopable, donor–acceptor type polymer. Journal of Electroanalytical Chemistry, 2008, 615, 75-83.	1.9	36
48	Synthesis of poly(diiodophenyleneoxide)s through atom transfer radical rearrangement polymerization of various copper complexes – Effect of ligand. Reactive and Functional Polymers, 2008, 68, 1594-1600.	2.0	1
49	Multichromic conducting copolymer of 1-benzyl-2,5-di(thiophen-2-yl)-1H-pyrrole with EDOT. Solar Energy Materials and Solar Cells, 2008, 92, 154-159.	3.0	53
50	Sorption, diffusion, and pervaporation characteristics of dimethylformamide/water mixtures using sodium alginate/polyvinyl pyrrolidone blend membranes. Vacuum, 2008, 82, 579-587.	1.6	22
51	Fine tuning of color via copolymerization and its electrochromic device application. Thin Solid Films, 2008, 516, 4139-4144.	0.8	43
52	Immobilization of Tyrosinase in Poly(2-thiophen-3-yl-alkyl ester) Derivatives. Journal of Macromolecular Science - Pure and Applied Chemistry, 2008, 45, 1009-1014.	1.2	3
53	Conducting Copolymers of Random and Block Copolymers of Electroactive and Liquid Crystalline Monomers with Pyrrole and Thiophene. Journal of Macromolecular Science - Pure and Applied Chemistry, 2007, 44, 265-270.	1.2	7
54	A neutral state green polymer with a superior transmissive light blue oxidized state. Chemical Communications, 2007, , 3246.	2.2	193

#	Article	IF	CITATIONS
55	Dual Type Complementary Colored Polymer Electrochromic Devices Based on Conducting Polymers of		