
Pinar Camurlu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7951805/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A neutral state green polymer with a superior transmissive light blue oxidized state. Chemical Communications, 2007, , 3246.	2.2	193
2	Polypyrrole derivatives for electrochromic applications. RSC Advances, 2014, 4, 55832-55845.	1.7	174
3	A soluble conducting polymer of 4-(2,5-di(thiophen-2-yl)-1H-pyrrol-1-yl)benzenamine and its multichromic copolymer with EDOT. Journal of Electroanalytical Chemistry, 2008, 612, 247-256.	1.9	124
	Dual Type Complementary Colored Polymer Electrochromic Devices Based on Conducting Polymers of		

4

Pinar Camurlu

#	Article	IF	CITATIONS
19	Construction of ferrocene modified conducting polymer based amperometric urea biosensor. Enzyme and Microbial Technology, 2017, 102, 53-59.	1.6	30
20	Electrosyntheses of anthracene clicked poly(thienylpyrrole)s andÂinvestigation of their electrochromic properties. Polymer, 2015, 73, 122-130.	1.8	29
21	The effect of montmorillonite functionalization on the performance of glucose biosensors based on composite montmorillonite/PAN nanofibers. Electrochimica Acta, 2020, 353, 136484.	2.6	29
22	Review—Functional Platforms for (Bio)sensing: Thiophene-Pyrrole Hybrid Polymers. Journal of the Electrochemical Society, 2020, 167, 037557.	1.3	28
23			

PINAR CAMURLU

#	Article	IF	CITATIONS
37	Sensitivity enhancement for microbial biosensors through cell Self-Coating with polypyrrole. International Journal of Polymeric Materials and Polymeric Biomaterials, 2019, 68, 1058-1067.	1.8	15
38	Multichromic polymers based on pyrene clicked thienylpyrrole. Polymer International, 2015, 64, 758-765.	1.6	14
39	Utilization of Polypyrrole Nanofibers in Glucose Detection. Journal of the Electrochemical Society, 2017, 164, B585-B590.	1.3	14
40	Next step in 2nd generation glucose biosensors: Ferrocene-loaded electrospun nanofibers. Materials Science and Engineering C, 2021, 128, 112270.	3.8	14
41	Synthesis and Electrochromic Properties of a Symmetric Polythiophene Derivative: Decanedionic Acid Bisâ€{2â€thiopheneâ€3â€ylâ€ether)ester and its Copolymer with Thiophene. Journal of Macromolecular Science - Pure and Applied Chemistry, 2005, 42, 451-462.	1.2	12
42	Solution processable donor acceptor type dibenzothiophen-S,S-dioxide derivatives for electrochromic applications. Journal of Electroanalytical Chemistry, 2011, 661, 359-366.	1.9	12
43	Optoelectronic Properties and Electrochromic Device Application of Novel Pyrazole Based Conducting Polymers. Journal of Macromolecular Science - Pure and Applied Chemistry, 2013, 50, 588-595.	1.2	11
44	Facile copper-based nanofibrous matrix for glucose sensing: Eenzymatic vs. non-enzymatic. Bioelectrochemistry, 2021, 140, 107751.	2.4	11
45	A Novel Copolymer: Starchâ€ <i>g</i> â€Polyvinylpyrrolidone. Starch/Staerke, 2009, 61, 267-274.	1.1	9
46	Reagentless Amperometric Glucose Biosensors: Ferrocene-Tethering and Copolymerization. Journal of the Electrochemical Society, 2020, 167, 107507.	1.3	9
47	The effect of copolymerization and carbon nanoelements on the performance of poly(2,5-di(thienyl)pyrrole) biosensors. Materials Science and Engineering C, 2019, 105, 110069.	3.8	8
48	Dual-type electrochromic devices based on both n- and p-dopable poly(dithieno[3,4-b,3′,4′-e]-[1,4]-dithiine). Synthetic Metals, 2006, 156, 1073-1077.	2.1	7
49	Conducting Copolymers of Random and Block Copolymers of Electroactive and Liquid Crystalline Monomers with Pyrrole and Thiophene. Journal of Macromolecular Science - Pure and Applied Chemistry, 2007, 44, 265-270.	1.2	7
50	Calixarene assembly with enhanced photocurrents using P(SNS-NH2)/CdS nanoparticle structure modified Au electrode systems. Physical Chemistry Chemical Physics, 2015, 17, 19911-19918.	1.3	7
51	Fast Switching Triphenylamine-Based Electrochromic Polymers with Fluorene Core: Electrochemical Synthesis and Optoelectronic Properties. Journal of the Electrochemical Society, 2022, 169, 026511.	1.3	7
52	Biosensing Efficiency of Nanocarbon-Reinforced Polyacrylonitrile Nanofibrous Matrices. Journal of the Electrochemical Society, 2022, 169, 020548.	1.3	7
53	Utilization of novel bithiazole based conducting polymers in electrochromic applications. Smart Materials and Structures, 2012, 21, 025019.	1.8	6
54	Multichromic metallopolymers of poly(2,5-dithienylpyrrole)s derived through tethering of ruthenium(II) bipiridyl complex. Electrochimica Acta, 2022, 424, 140562.	2.6	6

#	Article	IF	CITATIONS
55	Synthesis and characterization of poly(thiophen-3-yl acetic acid 4-pyrrol-1-yl phenyl) Tj ETQq1 1 0.784314 rgBT /0 Science, 2006, 100, 1988-1994.	Dverlock 1 1.3	0 Tf 50 747 5
56	Post Polymerization Functionalization of a Soluble Poly(2,5-dithienylpyrrole) Derivative via Click Chemistry. Journal of the Electrochemical Society, 2017, 164, H430-H436.	1.3	5
57	Synthesis, crystal structure and spectral analysis of diaquatetrakis(N-methylimidazole)Ni(II)(2,4,6-tribromophenol). Crystal Research and Technology, 2006, 41, 829-835.	0.6	4
58	Immobilization of Tyrosinase in Poly(2-thiophen-3-yl-alkyl ester) Derivatives. Journal of Macromolecular Science - Pure and Applied Chemistry, 2008, 45, 1009-1014.	1.2	3
59	Optoelectronic properties of thiazoleâ€based polythiophenes. Journal of Applied Polymer Science, 2015, 132, .	1.3	3
60	Glucose biosensor based on whole cells of Aspergillus niger MIUG 34 coated with polypyrrole. Journal of Biotechnology, 2017, 256, S55-S56.	1.9	3
61	Solution processable fluorene-extended Indeno[1,2-b]anthracenes: Synthesis, characterization and photophysical properties. Dyes and Pigments, 2018, 156, 82-90.	2.0	3
62	Functional Biosensing Platform for Urea Detection: Copolymer of Fc-Substituted 2,5-di(thienyl)pyrrole and 3,4-ethylenedioxythiophene. Journal of the Electrochemical Society, 2021, 168, 067513.	1.3	3
63	Ferrocene clicked polypyrrole derivatives: effect of spacer group on electrochemical properties and post-polymerization functionalization. Designed Monomers and Polymers, 2016, 19, 212-221.	0.7	2
64	Trace‣evel Phenolics Detection Based on Composite PANâ€MWCNTs Nanofibers. ChemBioChem, 2022, 23, .	1.3	2
65	Synthesis of poly(diiodophenyleneoxide)s through atom transfer radical rearrangement polymerization of various copper complexes – Effect of ligand. Reactive and Functional Polymers, 2008, 68, 1594-1600.	2.0	1
66	Poly(dibromophenylene oxide)s Through Atom Transfer Radical Rearrangement Polymerization of Various Transition Metal Complexes. Journal of Macromolecular Science - Pure and Applied Chemistry, 2009, 46, 321-330.	1.2	0
67	Electrochromic Polymers. , 2013, , 1-12.		0
68	Electrochromic Polymers. , 2015, , 666-676.		0
69	Ambipolar, multichromic metallopolymers of poly(3,4-ethylenedioxythiophene). Dyes and Pigments, 2022, 205, 110526	2.0	О