
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7951593/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Formation and growth rates of ultrafine atmospheric particles: a review of observations. Journal of Aerosol Science, 2004, 35, 143-176.	3.8	2,034
2	A review of atmospheric aerosol measurements. Atmospheric Environment, 2000, 34, 1959-1999.	4.1	693
3	Mobility particle size spectrometers: harmonization of technical standards and data structure to facilitate high quality long-term observations of atmospheric particle number size distributions. Atmospheric Measurement Techniques, 2012, 5, 657-685.	3.1	689
4	Variability in morphology, hygroscopicity, and optical properties of soot aerosols during atmospheric processing. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 10291-10296.	7.1	678
5	Organics alter hygroscopic behavior of atmospheric particles. Journal of Geophysical Research, 1995, 100, 18755.	3.3	533
6	Generating Particle Beams of Controlled Dimensions and Divergence: I. Theory of Particle Motion in Aerodynamic Lenses and Nozzle Expansions. Aerosol Science and Technology, 1995, 22, 293-313.	3.1	459
7	Application of the tandem differential mobility analyzer to studies of droplet growth or evaporation. Journal of Aerosol Science, 1986, 17, 771-787.	3.8	451
8	Relationship between Particle Mass and Mobility for Diesel Exhaust Particles. Environmental Science & Technology, 2003, 37, 577-583.	10.0	444
9	Observations of aminium salts in atmospheric nanoparticles and possible climatic implications. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 6634-6639.	7.1	415
10	An Ultrafine Aerosol Condensation Nucleus Counter. Aerosol Science and Technology, 1991, 14, 48-65.	3.1	407
11	Generating Particle Beams of Controlled Dimensions and Divergence: II. Experimental Evaluation of Particle Motion in Aerodynamic Lenses and Nozzle Expansions. Aerosol Science and Technology, 1995, 22, 314-324.	3.1	393
12	The Relationship between Mass and Mobility for Atmospheric Particles: A New Technique for Measuring Particle Density. Aerosol Science and Technology, 2002, 36, 227-238.	3.1	391
13	MEASURED ATMOSPHERIC NEW PARTICLE FORMATION RATES: IMPLICATIONS FOR NUCLEATION MECHANISMS. Chemical Engineering Communications, 1996, 151, 53-64.	2.6	358
14	On-line measurements of diesel nanoparticle composition and volatility. Atmospheric Environment, 2003, 37, 1199-1210.	4.1	343
15	Chemical Analysis of Diesel Engine Nanoparticles Using a Nano-DMA/Thermal Desorption Particle Beam Mass Spectrometer. Environmental Science & Technology, 2001, 35, 2233-2243.	10.0	300
16	Measurement of Atlanta Aerosol Size Distributions: Observations of Ultrafine Particle Events. Aerosol Science and Technology, 2001, 34, 75-87.	3.1	295
17	Structural Properties of Diesel Exhaust Particles Measured by Transmission Electron Microscopy (TEM): Relationships to Particle Mass and Mobility. Aerosol Science and Technology, 2004, 38, 881-889.	3.1	294
18	Sources and properties of Amazonian aerosol particles. Reviews of Geophysics, 2010, 48, .	23.0	283

#	Article	IF	CITATIONS
19	Measurement of Inherent Material Density of Nanoparticle Agglomerates. Journal of Nanoparticle Research, 2004, 6, 267-272.	1.9	263
20	On the sensitivity of particle size to relative humidity for Los Angeles aerosols. Atmospheric Environment, 1989, 23, 497-507.	1.0	256
21	New Particle Formation in the Remote Troposphere: A Comparison of Observations at Various Sites. Geophysical Research Letters, 1999, 26, 307-310.	4.0	240
22	Modal Aerosol Dynamics Modeling. Aerosol Science and Technology, 1997, 27, 673-688.	3.1	229
23	Atmospheric ions and nucleation: a review of observations. Atmospheric Chemistry and Physics, 2011, 11, 767-798.	4.9	228
24	Superhard silicon nanospheres. Journal of the Mechanics and Physics of Solids, 2003, 51, 979-992.	4.8	212
25	Equations Governing Single and Tandem DMA Configurations and a New Lognormal Approximation to the Transfer Function. Aerosol Science and Technology, 2008, 42, 421-432.	3.1	185
26	A study of new particle formation and growth involving biogenic and trace gas species measured during ACE 1. Journal of Geophysical Research, 1998, 103, 16385-16396.	3.3	184
27	Unexpected high levels of NO observed at South Pole. Geophysical Research Letters, 2001, 28, 3625-3628.	4.0	183
28	The History of Condensation Nucleus Counters. Aerosol Science and Technology, 2000, 33, 297-322.	3.1	182
29	Gas and aerosol wall losses in Teflon film smog chambers. Environmental Science & Technology, 1985, 19, 1176-1182.	10.0	179
30	Processing of Soot by Controlled Sulphuric Acid and Water Condensation—Mass and Mobility Relationship. Aerosol Science and Technology, 2009, 43, 629-640.	3.1	178
31	Formation of highly hygroscopic soot aerosols upon internal mixing with sulfuric acid vapor. Journal of Geophysical Research, 2009, 114, .	3.3	172
32	Effect of Working Fluid on Sub-2 nm Particle Detection with a Laminar Flow Ultrafine Condensation Particle Counter. Aerosol Science and Technology, 2009, 43, 81-96.	3.1	169
33	Acid–base chemical reaction model for nucleation rates in the polluted atmospheric boundary layer. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 18713-18718.	7.1	169
34	Mass accommodation coefficient for HO ₂ radicals on aqueous particles. Journal of Geophysical Research, 1987, 92, 4163-4170.	3.3	168
35	Stabilization of sulfuric acid dimers by ammonia, methylamine, dimethylamine, and trimethylamine. Journal of Geophysical Research D: Atmospheres, 2014, 119, 7502-7514.	3.3	167
36	Estimation of water uptake by organic compounds in submicron aerosols measured during the Southeastern Aerosol and Visibility Study. Journal of Geophysical Research, 2000, 105, 1471-1479.	3.3	164

#	Article	IF	CITATIONS
37	The potential contribution of organic salts to new particle growth. Atmospheric Chemistry and Physics, 2009, 9, 2949-2957.	4.9	163
38	Aerosol Wall Losses in Electrically Charged Chambers. Aerosol Science and Technology, 1985, 4, 249-268.	3.1	162
39	Atmospheric Measurements of Sub-20 nm Diameter Particle Chemical Composition by Thermal Desorption Chemical Ionization Mass Spectrometry. Aerosol Science and Technology, 2004, 38, 100-110.	3.1	162
40	Measurement of Particle Density by Inertial Classification of Differential Mobility Analyzer–Generated Monodisperse Aerosols. Aerosol Science and Technology, 1992, 17, 199-212.	3.1	156
41	Size-Dependent Mixing Characteristics of Volatile and Nonvolatile Components in Diesel Exhaust Aerosols. Environmental Science & Technology, 2003, 37, 5487-5495.	10.0	155
42	Growth rates of freshly nucleated atmospheric particles in Atlanta. Journal of Geophysical Research, 2005, 110, .	3.3	154
43	Sulfuric acid nucleation: An experimental study of the effect of seven bases. Journal of Geophysical Research D: Atmospheres, 2015, 120, 1933-1950.	3.3	153
44	An improved criterion for new particle formation in diverse atmospheric environments. Atmospheric Chemistry and Physics, 2010, 10, 8469-8480.	4.9	151
45	Electrical Mobility Spectrometer Using a Diethylene Glycol Condensation Particle Counter for Measurement of Aerosol Size Distributions Down to 1 nm. Aerosol Science and Technology, 2011, 45, 510-521.	3.1	149
46	Size and time-resolved growth rate measurements of 1 to 5 nm freshly formed atmospheric nuclei. Atmospheric Chemistry and Physics, 2012, 12, 3573-3589.	4.9	138
47	Evaporative losses of fine particulate nitrates during sampling. Atmospheric Environment Part A General Topics, 1992, 26, 3305-3312.	1.3	135
48	Nanoparticle formation using a plasma expansion process. Plasma Chemistry and Plasma Processing, 1995, 15, 581-606.	2.4	133
49	Sulfuric acid nucleation: power dependencies, variation with relative humidity, and effect of bases. Atmospheric Chemistry and Physics, 2012, 12, 4399-4411.	4.9	132
50	Time-Dependent Aerosol Models and Homogeneous Nucleation Rates. Aerosol Science and Technology, 1990, 13, 465-477.	3.1	130
51	Vapor pressures and surface free energies of C14-C18 monocarboxylic acids and C5 and C6 dicarboxylic acids. Environmental Science & Technology, 1989, 23, 1519-1523.	10.0	128
52	Measurements of Mexico City nanoparticle size distributions: Observations of new particle formation and growth. Geophysical Research Letters, 2004, 31, n/a-n/a.	4.0	127
53	A statistical proxy for sulphuric acid concentration. Atmospheric Chemistry and Physics, 2011, 11, 11319-11334.	4.9	124
54	Aerosol number size distributions from 3 to 500 nm diameter in the arctic marine boundary layer during summer and autumn. Tellus, Series B: Chemical and Physical Meteorology, 2022, 48, 197.	1.6	124

#	Article	IF	CITATIONS
55	Chemical composition of atmospheric nanoparticles during nucleation events in Atlanta. Journal of Geophysical Research, 2005, 110, .	3.3	121
56	Observation of neutral sulfuric acid-amine containing clusters in laboratory and ambient measurements. Atmospheric Chemistry and Physics, 2011, 11, 10823-10836.	4.9	120
57	Thermal plasma synthesis of ultrafine iron particles. Journal of Aerosol Science, 1993, 24, 367-382.	3.8	119
58	Thermal Desorption Chemical Ionization Mass Spectrometer for Ultrafine Particle Chemical Composition. Aerosol Science and Technology, 2003, 37, 471-475.	3.1	118
59	Study of the ammonia (gas)-sulfuric acid (aerosol) reaction rate. Environmental Science & Technology, 1983, 17, 347-352.	10.0	116
60	Hypersonic plasma particle deposition of nanostructured silicon and silicon carbide. Journal of Aerosol Science, 1998, 29, 707-720.	3.8	115
61	Measurements of relative humidity-dependent bounce and density for atmospheric particles using the DMA-impactor technique. Atmospheric Environment, 1994, 28, 1739-1746.	4.1	110
62	Chemical ionization mass spectrometric measurements of atmospheric neutral clusters using the cluster IMS. Journal of Geophysical Research, 2010, 115, .	3.3	110
63	Estimating nanoparticle growth rates from sizeâ€dependent charged fractions: Analysis of new particle formation events in Mexico City. Journal of Geophysical Research, 2008, 113, .	3.3	107
64	Ambient Pressure Proton Transfer Mass Spectrometry: Detection of Amines and Ammonia. Environmental Science & Technology, 2011, 45, 8881-8888.	10.0	107
65	Unipolar Diffusion Charging of Ultrafine Aerosols. Aerosol Science and Technology, 1988, 8, 173-187.	3.1	106
66	First Measurements of Neutral Atmospheric Cluster and 1–2 nm Particle Number Size Distributions During Nucleation Events. Aerosol Science and Technology, 2011, 45, ii-v.	3.1	105
67	Aerodynamic Focusing of Nanoparticles: I. Guidelines for Designing Aerodynamic Lenses for Nanoparticles. Aerosol Science and Technology, 2005, 39, 611-623.	3.1	101
68	Elemental composition and morphology of individual particles separated by size and hygroscopicity with the TDMA. Atmospheric Environment, 1996, 30, 101-108.	4.1	100
69	H2SO4vapor pressure of sulfuric acid and ammonium sulfate solutions. Journal of Geophysical Research, 1997, 102, 3725-3735.	3.3	100
70	Photochemical aerosol formation from SO2: A theoretical analysis of smog chamber data. Journal of Colloid and Interface Science, 1980, 78, 513-527.	9.4	98
71	New particle formation at a remote continental site: Assessing the contributions of SO2and organic precursors. Journal of Geophysical Research, 1997, 102, 6331-6339.	3.3	98
72	Characteristics of regional nucleation events in urban East St. Louis. Atmospheric Environment, 2007, 41, 4119-4127.	4.1	97

#	Article	IF	CITATIONS
73	Theoretical analysis of evaporative losses of adsorbed or absorbed species during atmospheric aerosol sampling. Environmental Science & Technology, 1991, 25, 456-459.	10.0	96
74	Focused nanoparticle-beam deposition of patterned microstructures. Applied Physics Letters, 2000, 77, 910-912.	3.3	95
75	Ultrafine Aerosol Measurement Using a Condensation Nucleus Counter with Pulse Height Analysis. Aerosol Science and Technology, 1996, 25, 200-213.	3.1	94
76	A Design Tool for Aerodynamic Lens Systems. Aerosol Science and Technology, 2006, 40, 320-334.	3.1	92
77	New particle formation in the sulfuric acid–dimethylamine–water system: reevaluation of CLOUD chamber measurements and comparison to an aerosol nucleation and growth model. Atmospheric Chemistry and Physics, 2018, 18, 845-863.	4.9	92
78	Nucleation and Growth of Aerosol in Chemically Reacting Systems: A Theoretical Study of the Near-Collision-Controlled Regime. Aerosol Science and Technology, 1989, 11, 120-132.	3.1	90
79	Size Distributions of Ambient Organic and Elemental Carbon. Aerosol Science and Technology, 1989, 10, 430-437.	3.1	90
80	Hypersonic impaction of ultrafine particles. Journal of Aerosol Science, 1990, 21, 169-187.	3.8	88
81	Inertial impaction of fine particles at moderate reynolds numbers and in the transonic regime with a thin-plate orifice nozzle. Journal of Aerosol Science, 1990, 21, 889-909.	3.8	86
82	New particle formation in the presence of an aerosol: Rates, time scales, and sub-0.01 μm size distributions. Journal of Colloid and Interface Science, 1983, 95, 72-80.	9.4	79
83	Aerodynamic Focusing of Nanoparticles: II. Numerical Simulation of Particle Motion Through Aerodynamic Lenses. Aerosol Science and Technology, 2005, 39, 624-636.	3.1	79
84	Transfer Functions and Penetrations of Five Differential Mobility Analyzers for Sub-2 nm Particle Classification. Aerosol Science and Technology, 2011, 45, 480-492.	3.1	79
85	Comparison of Sampling Methods for Carbonaceous Aerosols in Ambient Air. Aerosol Science and Technology, 1990, 12, 200-213.	3.1	78
86	Diamineâ€sulfuric acid reactions are a potent source of new particle formation. Geophysical Research Letters, 2016, 43, 867-873.	4.0	78
87	Modification of Laminar Flow Ultrafine Condensation Particle Counters for the Enhanced Detection of 1 nm Condensation Nuclei. Aerosol Science and Technology, 2012, 46, 309-315.	3.1	75
88	Hygroscopicity and volatility of 4–10 nm particles during summertime atmospheric nucleation events in urban Atlanta. Journal of Geophysical Research, 2005, 110, .	3.3	74
89	Mie Theory Evaluation of Species Contributions to 1990 Wintertime Visibility Reduction in the Grand Canyon. Journal of the Air and Waste Management Association, 1994, 44, 153-162.	0.6	71
90	Tandem Measurements of Aerosol Properties—A Review of Mobility Techniques with Extensions. Aerosol Science and Technology, 2008, 42, 801-816.	3.1	71

#	Article	IF	CITATIONS
91	Mass-mobility characterization of flame-made ZrO2 aerosols: Primary particle diameter and extent of aggregation. Journal of Colloid and Interface Science, 2012, 387, 12-23.	9.4	69
92	Aerosol size distributions measured at the South Pole during ISCAT. Atmospheric Environment, 2004, 38, 5493-5500.	4.1	67
93	Particle production near marine clouds: Sulfuric acid and predictions from classical binary nucleation. Geophysical Research Letters, 1999, 26, 2425-2428.	4.0	66
94	Dependence of particle nucleation and growth on high-molecular-weight gas-phase products during ozonolysis of α-pinene. Atmospheric Chemistry and Physics, 2013, 13, 7631-7644.	4.9	66
95	Issues in aerosol measurement for optics assessments. Journal of Geophysical Research, 1996, 101, 19189-19197.	3.3	65
96	Rapid Characterization of Agglomerate Aerosols by In Situ Massâ^'Mobility Measurements. Langmuir, 2009, 25, 8248-8254.	3.5	65
97	Evaporation Rates of Monodisperse Organic Aerosols in the 0.02- to 0.2-μm-Diameter Range. Aerosol Science and Technology, 1987, 6, 247-260.	3.1	63
98	In situstructure characterization of airborne carbon nanofibres by a tandem mobility–mass analysis. Nanotechnology, 2006, 17, 3613-3621.	2.6	61
99	Identification of the biogenic compounds responsible for sizeâ€dependent nanoparticle growth. Geophysical Research Letters, 2012, 39, .	4.0	61
100	Particle beam mass spectrometry of submicron particles charged to saturation in an electron beam. Journal of Aerosol Science, 1995, 26, 745-756.	3.8	60
101	Aerosol mixing state, hygroscopic growth and cloud activation efficiency during MIRAGE 2006. Atmospheric Chemistry and Physics, 2013, 13, 5049-5062.	4.9	60
102	Response characteristics for four different condensation nucleus counters to particles in the 3–50 nm diameter range. Journal of Aerosol Science, 1985, 16, 443-456.	3.8	59
103	Modelling particle formation and growth in a plasma synthesis reactor. Plasma Chemistry and Plasma Processing, 1988, 8, 145-157.	2.4	57
104	Optical shape fraction measurements of submicrometre laboratory and atmospheric aerosols. Measurement Science and Technology, 1998, 9, 183-196.	2.6	57
105	Chemical and Physical Properties of Ultrafine Diesel Exhaust Particles Sampled Downstream of a Catalytic Trap. Environmental Science & Technology, 2006, 40, 5502-5507.	10.0	57
106	Effects of water condensation and evaporation on diesel chain-agglomerate morphology. Journal of Aerosol Science, 1994, 25, 447-459.	3.8	55
107	Inversion of ultrafine condensation nucleus counter pulse height distributions to obtain nanoparticle (â^¼3–10nm) size distributions. Journal of Aerosol Science, 1998, 29, 601-615.	3.8	55
108	Size distributions of 3–10 nm atmospheric particles: implications for nucleation mechanisms. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2000, 358, 2625-2642.	3.4	53

#	Article	IF	CITATIONS
109	The Bipolar Diffusion Charging of Nanoparticles: A Review and Development of Approaches for Non-Spherical Particles. Aerosol Science and Technology, 2015, 49, 1181-1194.	3.1	53
110	Nanostructured materials production by hypersonic plasma particle deposition. Scripta Materialia, 1997, 9, 129-132.	0.5	52
111	A closure study of aerosol mass concentration measurements: comparison of values obtained with filters and by direct measurements of mass distributions. Atmospheric Environment, 2003, 37, 1223-1230.	4.1	51
112	Optical counter response to monodisperse atmospheric aerosols. Atmospheric Environment Part A General Topics, 1991, 25, 463-468.	1.3	49
113	Sampling Nanoparticles for Chemical Analysis by Low Resolution Electrical Mobility Classification. Environmental Science & Technology, 2009, 43, 4653-4658.	10.0	48
114	An experimental and numerical study of particle nucleation and growth during low-pressure thermal decomposition of silane. Journal of Aerosol Science, 2003, 34, 691-711.	3.8	46
115	Formation of highly uniform silicon nanoparticles in high density silane plasmas. Journal of Applied Physics, 2003, 94, 2277-2283.	2.5	46
116	A comparative study of nucleation parameterizations: 1. Examination and evaluation of the formulations. Journal of Geophysical Research, 2010, 115, .	3.3	45
117	Electron Impact Charging Properties of Size-Selected, Submicrometer Organic Particles. The Journal of Physical Chemistry, 1995, 99, 5126-5138.	2.9	44
118	Fine particle size distributions at the Mauna Loa Observatory, Hawaii. Journal of Geophysical Research, 1996, 101, 14767-14775.	3.3	44
119	Aerosol formation in reacting gases: Relation of surface area to rate of gas-to-particle conversion. Journal of Colloid and Interface Science, 1978, 64, 248-257.	9.4	42
120	Aerodynamic Lens System for Producing Particle Beams at Stratospheric Pressures. Aerosol Science and Technology, 1998, 29, 50-56.	3.1	41
121	Size Distributions of 3–100-nm Urban Atlanta Aerosols: Measurement and Observations. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 2002, 15, 169-178.	1.2	41
122	Fineâ€particle emissions from solid biofuel combustion studied with singleâ€particle mass spectrometry: Identification of markers for organics, soot, and ash components. Journal of Geophysical Research D: Atmospheres, 2013, 118, 859-870.	3.3	41
123	Intercomparison of Four Methods to Determine Size Distributions of Low-Concentration (â^¼ 100 cmâ^3), Ultrafine Aerosols (3 <dp< 10="" aerosol="" and<br="" arctic.="" data="" from="" illustrative="" nm)="" science="" the="" with="">Technology, 1994, 21, 95-109.</dp<>	3.1	40
124	Multiangle Light-Scattering Measurements of Refractive Index of Submicron Atmospheric Particles. Aerosol Science and Technology, 2007, 41, 549-569.	3.1	40
125	Emissions from Ethanol-Gasoline Blends: A Single Particle Perspective. Atmosphere, 2011, 2, 182-200.	2.3	40
126	Measuring particle size-dependent physicochemical structure in airborne single walled carbon nanotube agglomerates. Journal of Nanoparticle Research, 2006, 9, 85-92.	1.9	39

#	Article	IF	CITATIONS
127	Aerosol Charge Fractions Downstream of Six Bipolar Chargers: Effects of Ion Source, Source Activity, and Flowrate. Aerosol Science and Technology, 2014, 48, 1207-1216.	3.1	35
128	Multiple new-particle growth pathways observed at the US DOE Southern Great Plains field site. Atmospheric Chemistry and Physics, 2016, 16, 9321-9348.	4.9	35
129	Distinguishing Between Spherical and Nonspherical Particles by Measuring the Variability in Azimuthal Light Scattering. Aerosol Science and Technology, 1995, 23, 373-391.	3.1	34
130	Sampling at controlled relative humidity with a cascade impactor. Atmospheric Environment, 1999, 33, 1049-1056.	4.1	34
131	Importance of the Number of Acid Molecules and the Strength of the Base for Double-Ion Formation in (H ₂ SO ₄) _{<i>m</i>} Å·BaseÅ·(H ₂ O) ₆ Clusters. Journal of the American Chemical Society, 2008, 130, 14144-14147.	13.7	34
132	Effect of Flow-induced Relative Humidity Changes on Size Cuts for Sulfuric Acid Droplets in the Microorifice Uniform Deposit Impactor (MOUDI). Aerosol Science and Technology, 1991, 14, 266-277.	3.1	33
133	Size- and Composition-Dependent Response of the DAWN-A Multiangle Single-Particle Optical Detector. Aerosol Science and Technology, 1994, 20, 345-362.	3.1	33
134	A comparative study of nucleation parameterizations: 2. Threeâ€dimensional model application and evaluation. Journal of Geophysical Research, 2010, 115, .	3.3	33
135	Nanoparticles and the Environment. Journal of the Air and Waste Management Association, 2005, 55, 1411-1417.	1.9	32
136	An experimental study of nanoparticle focusing with aerodynamic lenses. International Journal of Mass Spectrometry, 2006, 258, 30-36.	1.5	32
137	An Ultrafine, Water-Based Condensation Particle Counter and its Evaluation under Field Conditions. Aerosol Science and Technology, 2008, 42, 862-871.	3.1	32
138	Analysis of heterogeneous water vapor uptake by metal iodide cluster ions via differential mobility analysis-mass spectrometry. Journal of Chemical Physics, 2015, 143, 104204.	3.0	32
139	Synthesis of nanophase silicon, carbon, and silicon carbide powders using a plasma expansion process. Journal of Materials Research, 1995, 10, 2073-2084.	2.6	31
140	Characterization of agglomerates by simultaneous measurement of mobility, vacuum aerodynamic diameter and mass. Journal of Aerosol Science, 2012, 44, 24-45.	3.8	31
141	Quantitative and time-resolved nanoparticle composition measurements during new particle formation. Faraday Discussions, 2013, 165, 25.	3.2	31
142	Vertically resolved concentration and liquid water content of atmospheric nanoparticles at the US DOE Southern Great Plains site. Atmospheric Chemistry and Physics, 2018, 18, 311-326.	4.9	31
143	Detection of aluminum particles during the chemical vapor deposition of aluminum films using tertiaryamine complexes of alane (AlH3). Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1991, 9, 2782-2784.	2.1	30
144	Chemical ionization of clusters formed from sulfuric acid and dimethylamine or diamines. Atmospheric Chemistry and Physics, 2016, 16, 12513-12529.	4.9	30

#	Article	IF	CITATIONS
145	Resolving nanoparticle growth mechanisms from size- and time-dependent growth rate analysis. Atmospheric Chemistry and Physics, 2018, 18, 1307-1323.	4.9	28
146	Design and evaluation of a novel diffusion separator for measuring gas/particle distributions of semivolatile organic compounds. Environmental Science & amp; Technology, 1993, 27, 2441-2449.	10.0	27
147	System for In Situ Characterization of Nanoparticles Synthesized in a Thermal Plasma Process. Plasma Chemistry and Plasma Processing, 2005, 25, 439-453.	2.4	27
148	Deposition of silica agglomerates in a cast of human lung airways: Enhancement relative to spheres of equal mobility and aerodynamic diameter. Journal of Aerosol Science, 2011, 42, 508-516.	3.8	27
149	Modification of the TSI 3025 Condensation Particle Counter for Pulse Height Analysis. Aerosol Science and Technology, 1996, 25, 214-218.	3.1	26
150	Characterization of nanosized silica size standards. Aerosol Science and Technology, 2017, 51, 936-945.	3.1	26
151	A Device for Generating Singly Charged Particles in the 0.1–1.0-μm Diameter Range. Aerosol Science and Technology, 1989, 10, 451-462.	3.1	25
152	Effects of particle shape and chemical composition on the electron impact charging properties of submicron inorganic particles. Journal of Aerosol Science, 1996, 27, 587-606.	3.8	25
153	Analysis of heterogeneous uptake by nanoparticles via differential mobility analysis–drift tube ion mobility spectrometry. Physical Chemistry Chemical Physics, 2014, 16, 6968-6979.	2.8	24
154	Comparisons of aerosol properties measured by impactors and light scattering from individual particles: refractive index, number and volume concentrations, and size distributions. Atmospheric Environment, 2002, 36, 1853-1861.	4.1	23
155	White-light Detection for Nanoparticle Sizing with the TSI Ultrafine Condensation Particle Counter. Journal of Nanoparticle Research, 2000, 2, 85-90.	1.9	21
156	Particulate Matter: A Strategic Vision for Transportation-Related Research. Environmental Science & Technology, 2006, 40, 5593-5599.	10.0	21
157	The role of cluster energy nonaccommodation in atmospheric sulfuric acid nucleation. Journal of Chemical Physics, 2010, 132, 024304.	3.0	21
158	A Sample Extraction Diluter for Ultrafine Aerosol Sampling. Aerosol Science and Technology, 1984, 3, 441-451.	3.1	20
159	Evaluation of Fine Particle Number Concentrations in CMAQ. Aerosol Science and Technology, 2006, 40, 985-996.	3.1	20
160	Mobility Analysis of 2Ânm to 11Ânm Aerosol Particles with an Aspirating Drift Tube Ion Mobility Spectrometer. Aerosol Science and Technology, 2014, 48, 108-118.	3.1	20
161	The electrical mobilities and scalar friction factors of modest-to-high aspect ratio particles in the transition regime. Journal of Aerosol Science, 2015, 82, 24-39.	3.8	20
162	Characterization of the TSI model 3086 differential mobility analyzer for classifying aerosols down to 1Ânm. Aerosol Science and Technology, 2018, 52, 748-756.	3.1	19

#	Article	IF	CITATIONS
163	Title is missing!. Journal of Nanoparticle Research, 1999, 1, 31-42.	1.9	18
164	A new method for measuring the dependence of particle size distributions on relative humidity, with application to the Southeastern Aerosol and Visibility Study. Journal of Geophysical Research, 2001, 106, 14935-14949.	3.3	18
165	Hypersonic Plasma Particle Deposition—A Hybrid between Plasma Spraying and Vapor Deposition. Journal of Thermal Spray Technology, 2006, 15, 822-826.	3.1	18
166	Production of Residue-Free Nanoparticles by Atomization of Aqueous Solutions. Aerosol Science and Technology, 2012, 46, 354-360.	3.1	18
167	Toward Reconciling Measurements of Atmospherically Relevant Clusters by Chemical Ionization Mass Spectrometry and Mobility Classification/Vapor Condensation. Aerosol Science and Technology, 2015, 49, i-iii.	3.1	18
168	Particle beam mass spectrometer measurements of particle formation during low pressure chemical vapor deposition of polysilicon and SiO2 films. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1996, 14, 582-587.	2.1	17
169	Sizing Small Sulfuric Acid Particles with an Ultrafine Particle Condensation Nucleus Counter. Aerosol Science and Technology, 2002, 36, 554-559.	3.1	17
170	Errors in nanoparticle growth rates inferred from measurements in chemically reacting aerosol systems. Atmospheric Chemistry and Physics, 2018, 18, 8979-8993.	4.9	17
171	Growth of monodisperse, submicron aerosol particles exposed to SO2, H2O2, and NH3. Journal of Atmospheric Chemistry, 1995, 20, 117-139.	3.2	16
172	Secondary Electron Yield Measurements as a Means for Probing Organic Films on Aerosol Particles. Aerosol Science and Technology, 1998, 28, 77-90.	3.1	16
173	Preface to topical collection on new particle formation in Atlanta. Journal of Geophysical Research, 2005, 110, .	3.3	16
174	Computational Fluid Dynamics Studies of a Flow Reactor: Free Energies of Clusters of Sulfuric Acid with NH ₃ or Dimethyl Amine. Journal of Physical Chemistry A, 2017, 121, 3976-3990.	2.5	16
175	High-resolution aerodynamic spectrometry of submicron particles: sheathed variable-cut impactors vs other devices. Journal of Aerosol Science, 1992, 23, 11-26.	3.8	15
176	Particle transport in a parallel-plate semiconductor reactor: Chamber modification and design criterion for enhanced process cleanliness. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2000, 18, 2198.	2.1	14
177	The dynamic behavior of nucleating aerosols in constant reaction rate systems: Dimensional analysis and generic numerical solutions. Aerosol Science and Technology, 2017, 51, 1057-1070.	3.1	14
178	Emissions from soy biodiesel blends: A single particle perspective. Atmospheric Environment, 2011, 45, 3406-3413.	4.1	13
179	Stationary characteristics in bipolar diffusion charging of aerosols: Improving the performance of electrical mobility size spectrometers. Aerosol Science and Technology, 2018, 52, 809-813.	3.1	12
180	A New Rotating Coarse Particle Sampler. Aerosol Science and Technology, 1982, 2, 69-78.	3.1	11

#	Article	IF	CITATIONS
181	Particle contamination in low pressure organometallic chemical vapor deposition reactors: Methods of particle detection and causes of particle formation using a liquid alane (AlH3) precursor. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1993, 11, 3026-3033.	2.1	11
182	Nanostructured SiC by chemical vapor deposition and nanoparticle impaction. Surface and Coatings Technology, 2007, 202, 871-875.	4.8	11
183	Method to assess performance of scanning mobility particle sizer (SMPS) instruments and software. Aerosol Science and Technology, 2018, 52, 609-613.	3.1	11
184	Effect of the Tolman Surface Tension Correction on Nucleation in Chemically Reacting Systems. Aerosol Science and Technology, 1990, 13, 183-195.	3.1	10
185	A Method to Increase Control Efficiencies of Wet Scrubbers for Submicron Particles and Particulate Metals. Journal of the Air and Waste Management Association, 1994, 44, 184-194.	0.6	10
186	Distinction of Coal Dust Particles from Liquid Droplets by Variations in Azimuthal Light Scattering. Journal of Occupational and Environmental Hygiene, 1996, 11, 637-645.	0.4	10
187	Spatial Distribution of Chemical Components in Aerosol Particles as Determined from Secondary Electron Yield Measurements: Implications for Mechanisms of Multicomponent Aerosol Crystallization. Journal of Colloid and Interface Science, 1997, 193, 250-258.	9.4	10
188	Analysis of nanostructured coatings synthesized by ballistic impaction of nanoparticles. Thin Solid Films, 2006, 515, 1147-1151.	1.8	10
189	Micropattern Deposition of Colloidal Semiconductor Nanocrystals by Aerodynamic Focusing. Aerosol Science and Technology, 2010, 44, 55-60.	3.1	10
190	Special Issue on Aerosol Measurements in the 1 nm Range. Aerosol Science and Technology, 2011, 45, i-i.	3.1	10
191	Experimental study of simultaneous coagulation and diffusional loss of free molecule aerosols in turbulent pipe flow. Journal of Colloid and Interface Science, 1982, 88, 522-529.	9.4	9
192	Investigation of Particle Generation during the Lowâ€Pressure Chemical Vapor Deposition of Borophosphosilicate Glass Films. Journal of the Electrochemical Society, 1998, 145, 2051-2057.	2.9	9
193	Thermal plasma deposition of nanostructured films. IEEE Transactions on Plasma Science, 1999, 27, 46-47.	1.3	9
194	Instruction Manual for the Aerodynamic Lens Calculator. Aerosol Science and Technology, 2006, 40, 1-10.	3.1	9
195	On Simultaneous Coagulation and Diffusional Loss of Free Molecule Aerosols in Turbulent Pipe Flow. Aerosol Science and Technology, 1982, 1, 163-178.	3.1	8
196	Intercomparison of three methods to determine size distributions of ultrafine aerosols with low number concentrations. Journal of Aerosol Science, 1993, 24, 551-554.	3.8	8
197	Nanoparticle-Coated Silicon Nanowires. Journal of Nanoparticle Research, 2006, 8, 995-1002.	1.9	8
198	Impact Dynamics of Colloidal Quantum Dot Solids. Langmuir, 2011, 27, 12677-12683.	3.5	8

#	Article	IF	CITATIONS
199	Accuracy of recovered moments for narrow mobility distributions obtained with commonly used inversion algorithms for mobility size spectrometers. Aerosol Science and Technology, 2018, 52, 614-625.	3.1	8
200	The coupling of nucleation and diffusion near an aerosol particle. Journal of Colloid and Interface Science, 1983, 92, 584-587.	9.4	7
201	Chapter 17 A review of atmospheric aerosol measurements. Developments in Environmental Science, 2002, , 443-517.	0.5	7
202	Aluminum Particle Formation in the GaS Phase of a Low Pressure Chemical Vapor Deposition Reactor Using Dimethylethylamine Alane (AlH ₃) as a Precursor. Materials Research Society Symposia Proceedings, 1992, 282, 317.	0.1	5
203	13 O 02 Distinguishing between spherical and irregular shaped aerosol particles in the submicron size range using the Dawn-A single particle optical detector. Journal of Aerosol Science, 1993, 24, S79-S80.	3.8	3
204	Effect of process parameters on the structure of Si–Ti–N nanostructured coatings deposited by hypersonic plasma particle deposition. Surface and Coatings Technology, 2005, 200, 1524-1529.	4.8	3
205	A fast-scanning DMA train for precision quantification of early nanoparticle growth. , 2013, , .		3
206	Novel measurements of atmospheric aerosol properties. AIP Conference Proceedings, 2000, , .	0.4	2
207	Acid-base chemical reaction model for nucleation rates in the polluted atmospheric boundary layer. , 2013, , .		2
208	Detecting Below 3 nm Particles Using Ethylene Glycol-based Ultrafine Condensation Particle Counter. , 2007, , 649-653.		1
209	Measurement of Inherent Material Density of Nanoparticle Agglomerates. , 2004, 6, 267.		1
210	Reply of McMurry and Friedlander to comments by Kuhlman and Reist on "aerosol formation in reacting gases: Relationship of surface area to rate of gas-to-particle conversion― Journal of Colloid and Interface Science, 1980, 74, 307.	9.4	0
211	Kenneth T. Whitby 1995—1983. Aerosol Science and Technology, 1984, 3, 121-123.	3.1	0
212	Reply to the comment on "Theoretical analysis of evaporative losses of adsorbed or absorbed species during atmospheric aerosol sampling". Environmental Science & Technology, 1991, 25, 1649-1650.	10.0	0
213	SIZE DISTRIBUTIONS OF 3–10 NM ATMOSPHERIC PARTICLES: IMPLICATIONS FOR NUCLEATION MECHANISMS. 2003, , 79-102.		0
214	Synthesis and Deposition of Nanoparticles Using a Hypersonically Expanded Plasma. AIP Conference Proceedings, 2005, , .	0.4	0
215	Taisto Raunemaa (1939–2006). Journal of Aerosol Science, 2006, 37, 1649-1650.	3.8	0
216	The Aerosol Community Mourns the Loss of a Giant Sheldon K. Friedlander 1927–2007. Aerosol Science and Technology, 2007, 41, 895-897.	3.1	0

#	Article	IF	CITATIONS
217	Sheldon K. Friedlander. Journal of Aerosol Science, 2007, 38, 479-480.	3.8	0
218	Introducing Aerosol Research Letters (ARL). Aerosol Science and Technology, 2009, 43, 961-961.	3.1	0
219	Estimating Nanoparticle Growth Rates from Size-Dependent Charged Fractions – Analysis of New Particle Formation Events in Mexico City. , 2007, , 897-901.		0
220	Laboratory and Field Studies of Gas-Aerosol Reactions. , 1986, , 41-55.		0