
Jean-François Hernandez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7951462/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The C-terminal segment of Leishmania major HslU: Toward potential inhibitors of LmHslVU activity. Bioorganic Chemistry, 2022, 119, 105539.	4.1	1
2	1,2,4â€Triazoleâ€3â€Thione Analogues with a 2â€Ethylbenzoic Acid at Position 4 as VIMâ€ŧype Metalloâ€Î²â€Łac Inhibitors. ChemMedChem, 2022, 17, .	tamase	9
3	Taylor Dispersion Analysis and Atomic Force Microscopy Provide a Quantitative Insight into the Aggregation Kinetics of Al² (1–40)/Al² (1–42) Amyloid Peptide Mixtures. ACS Chemical Neuroscience, 2022, 13, 786-795.	3.5	6
4	Intermolecular interactions of the extended recognition site of <scp>VIM</scp> â€2 <scp>metalloâ€Î²â€lactamase</scp> with 1,2,4â€triazoleâ€3â€thione inhibitors. Validations of a polarizable molecular mechanics potential by ab initio <scp>QC</scp> . Journal of Computational Chemistry, 2021, 42, 86-106.	3.3	4
5	Unraveling the Speciation of Î ² -Amyloid Peptides during the Aggregation Process by Taylor Dispersion Analysis. Analytical Chemistry, 2021, 93, 6523-6533.	6.5	19
6	4-Alkyl-1,2,4-triazole-3-thione analogues as metallo-β-lactamase inhibitors. Bioorganic Chemistry, 2021, 113, 105024.	4.1	12
7	1,2,4-Triazole-3-thione compounds with a 4-ethyl alkyl/aryl sulfide substituent are broad-spectrum metallo-β-lactamase inhibitors with re-sensitization activity. European Journal of Medicinal Chemistry, 2021, 226, 113873.	5.5	16
8	4-Amino-1,2,4-triazole-3-thione-derived Schiff bases as metallo-β-lactamase inhibitors. European Journal of Medicinal Chemistry, 2020, 208, 112720.	5.5	29
9	4-(N-Alkyl- and -Acyl-amino)-1,2,4-triazole-3-thione Analogs as Metallo-β-Lactamase Inhibitors: Impact of 4-Linker on Potency and Spectrum of Inhibition. Biomolecules, 2020, 10, 1094.	4.0	15
10	Solidâ€Phase Synthesis of Substrateâ€Based Dipeptides and Heterocyclic Pseudoâ€dipeptides as Potential NO Synthase Inhibitors. ChemMedChem, 2020, 15, 517-531.	3.2	1
11	The HslV Protease from Leishmania major and Its Activation by C-terminal HslU Peptides. International Journal of Molecular Sciences, 2019, 20, 1021.	4.1	3
12	1,2,4â€Triazoleâ€3â€thione Compounds as Inhibitors of Dizinc Metalloâ€Î²â€lactamases. ChemMedChem, 2017, 972-985.	$\frac{12}{3.2}$	49
13	Calibration of 1,2,4-Triazole-3-Thione, an Original Zn-Binding Group of Metallo-β-Lactamase Inhibitors. Validation of a Polarizable MM/MD Potential by Quantum Chemistry. Journal of Physical Chemistry B, 2017, 121, 6295-6312.	2.6	11
14	The bacterial-like HslVU protease complex subunits are involved in the control of different cell cycle events in trypanosomatids. Acta Tropica, 2014, 131, 22-31.	2.0	11
15	Solid-Phase Synthesis of Arginine-Containing Peptides and Fluorogenic Substrates Using a Side-Chain Anchoring Approach. Journal of Organic Chemistry, 2004, 69, 8394-8402.	3.2	16
16	Synthesis of Various 3-Substituted 1,2,4-Oxadiazole-Containing Chiral β3- and α-Amino Acids from Fmoc-Protected Aspartic Acid. Journal of Organic Chemistry, 2003, 68, 7316-7321.	3.2	53