List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7951181/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Going back to the roots: the microbial ecology of the rhizosphere. Nature Reviews Microbiology, 2013, 11, 789-799.	28.6	2,669
2	Deciphering the Rhizosphere Microbiome for Disease-Suppressive Bacteria. Science, 2011, 332, 1097-1100.	12.6	2,135
3	The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiology Reviews, 2013, 37, 634-663.	8.6	1,929
4	MICROBIALPOPULATIONSRESPONSIBLE FORSPECIFICSOILSUPPRESSIVENESS TOPLANTPATHOGENS. Annual Review of Phytopathology, 2002, 40, 309-348.	7.8	1,469
5	The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant and Soil, 2009, 321, 341-361.	3.7	1,318
6	Natural functions of lipopeptides from <i>Bacillus</i> and <i>Pseudomonas</i> : more than surfactants and antibiotics. FEMS Microbiology Reviews, 2010, 34, 1037-1062.	8.6	910
7	Mass spectral molecular networking of living microbial colonies. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E1743-52.	7.1	804
8	Minimum Information about a Biosynthetic Gene cluster. Nature Chemical Biology, 2015, 11, 625-631.	8.0	715
9	Microbial Extracellular Polymeric Substances: Ecological Function and Impact on Soil Aggregation. Frontiers in Microbiology, 2018, 9, 1636.	3.5	713
10	Antibiotic production by bacterial biocontrol agents. Antonie Van Leeuwenhoek, 2002, 81, 537-547.	1.7	707
11	Pathogen-induced activation of disease-suppressive functions in the endophytic root microbiome. Science, 2019, 366, 606-612.	12.6	621
12	Comparative Genomics of Plant-Associated Pseudomonas spp.: Insights into Diversity and Inheritance of Traits Involved in Multitrophic Interactions. PLoS Genetics, 2012, 8, e1002784.	3.5	578
13	Impact of plant domestication on rhizosphere microbiome assembly and functions. Plant Molecular Biology, 2016, 90, 635-644.	3.9	504
14	Diversity and Natural Functions of Antibiotics Produced by Beneficial and Plant Pathogenic Bacteria. Annual Review of Phytopathology, 2012, 50, 403-424.	7.8	475
15	Natural Plant Protection by 2,4-Diacetylphloroglucinol-Producing Pseudomonas spp. in Take-All Decline Soils. Molecular Plant-Microbe Interactions, 1998, 11, 144-152.	2.6	440
16	Cyclic Lipopeptide Production by Plant-Associated Pseudomonas spp.: Diversity, Activity, Biosynthesis, and Regulation. Molecular Plant-Microbe Interactions, 2006, 19, 699-710.	2.6	403
17	Ecology and Evolution of Plant Microbiomes. Annual Review of Microbiology, 2019, 73, 69-88.	7.3	379
18	Volatile affairs in microbial interactions. ISME Journal, 2015, 9, 2329-2335.	9.8	372

#	Article	IF	CITATIONS
19	Dose-Response Relationships in Biological Control of Fusarium Wilt of Radish byPseudomonasspp Phytopathology, 1995, 85, 1075.	2.2	302
20	Linking rhizosphere microbiome composition of wild and domesticated <i>Phaseolus vulgaris</i> to genotypic and root phenotypic traits. ISME Journal, 2017, 11, 2244-2257.	9.8	298
21	Influence of resistance breeding in common bean on rhizosphere microbiome composition and function. ISME Journal, 2018, 12, 212-224.	9.8	296
22	Fungal invasion of the rhizosphere microbiome. ISME Journal, 2016, 10, 265-268.	9.8	294
23	Soil immune responses. Science, 2016, 352, 1392-1393.	12.6	287
24	Role of the cyclic lipopeptide massetolide A in biological control of Phytophthora infestans and in colonization of tomato plants by Pseudomonas fluorescens. New Phytologist, 2007, 175, 731-742.	7.3	272
25	Metabolic and Transcriptomic Changes Induced in Arabidopsis by the Rhizobacterium <i>Pseudomonas fluorescens</i> SS101. Plant Physiology, 2012, 160, 2173-2188.	4.8	254
26	Genome-based discovery, structure prediction and functional analysis of cyclic lipopeptide antibiotics inPseudomonasspecies. Molecular Microbiology, 2007, 63, 417-428.	2.5	247
27	Diversity and Evolution of the Phenazine Biosynthesis Pathway. Applied and Environmental Microbiology, 2010, 76, 866-879.	3.1	241
28	Ectomycorrhizal symbiosis affects functional diversity of rhizosphere fluorescent pseudomonads. New Phytologist, 2005, 165, 317-328.	7.3	229
29	Promotion of plant growth by Pseudomonas fluorescens strain SS101 via novel volatile organic compounds. Biochemical and Biophysical Research Communications, 2015, 461, 361-365.	2.1	225
30	PATHOGENSELF-DEFENSE: Mechanisms to Counteract Microbial Antagonism. Annual Review of Phytopathology, 2003, 41, 501-538.	7.8	224
31	Biochemical, Genetic, and Zoosporicidal Properties of Cyclic Lipopeptide Surfactants Produced by Pseudomonas fluorescens. Applied and Environmental Microbiology, 2003, 69, 7161-7172.	3.1	223
32	Current Insights into the Role of Rhizosphere Bacteria in Disease Suppressive Soils. Frontiers in Microbiology, 2017, 8, 2529.	3.5	218
33	Exploiting Genotypic Diversity of 2,4-Diacetylphloroglucinol-Producing Pseudomonas spp.: Characterization of Superior Root-Colonizing P. fluorescens Strain Q8r1-96. Applied and Environmental Microbiology, 2001, 67, 2545-2554.	3.1	217
34	Effect of Population Density of Pseudomonas fluorescens on Production of 2,4-Diacetylphloroglucinol in the Rhizosphere of Wheat. Phytopathology, 1999, 89, 470-475.	2.2	211
35	Saving seed microbiomes. ISME Journal, 2018, 12, 1167-1170.	9.8	211
36	Phenazine antibiotics produced by fluorescent pseudomonads contribute to natural soil suppressiveness to Fusarium wilt. ISME Journal, 2009, 3, 977-991.	9.8	202

#	Article	IF	CITATIONS
37	The wild side of plant microbiomes. Microbiome, 2018, 6, 143.	11.1	199
38	Diversity of Cultivated Endophytic Bacteria from Sugarcane: Genetic and Biochemical Characterization of <i>Burkholderia cepacia</i> Complex Isolates. Applied and Environmental Microbiology, 2007, 73, 7259-7267.	3.1	190
39	Utilization of heterologous siderophores and rhizosphere competence of fluorescent <i>Pseudomonas</i> spp Canadian Journal of Microbiology, 1995, 41, 126-135.	1.7	179
40	Effect of 2,4-Diacetylphloroglucinol on Pythium: Cellular Responses and Variation in Sensitivity Among Propagules and Species. Phytopathology, 2003, 93, 966-975.	2.2	174
41	Diversity and functions of volatile organic compounds produced by Streptomyces from a disease-suppressive soil. Frontiers in Microbiology, 2015, 6, 1081.	3.5	174
42	Transcriptional and antagonistic responses of <i>Pseudomonas fluorescens</i> Pf0-1 to phylogenetically different bacterial competitors. ISME Journal, 2011, 5, 973-985.	9.8	166
43	Frequency, Diversity, and Activity of 2,4-Diacetylphloroglucinol-Producing Fluorescent Pseudomonas spp. in Dutch Take-all Decline Soils. Phytopathology, 2003, 93, 54-63.	2.2	162
44	Lost in diversity: the interactions between soilâ€borne fungi, biodiversity and plant productivity. New Phytologist, 2018, 218, 542-553.	7.3	160
45	Massetolide A Biosynthesis in <i>Pseudomonas fluorescens</i> . Journal of Bacteriology, 2008, 190, 2777-2789.	2.2	159
46	Exploring fish microbial communities to mitigate emerging diseases in aquaculture. FEMS Microbiology Ecology, 2018, 94, .	2.7	152
47	Differential Ability of Genotypes of 2,4-Diacetylphloroglucinol-Producing Pseudomonas fluorescens Strains To Colonize the Roots of Pea Plants. Applied and Environmental Microbiology, 2002, 68, 3226-3237.	3.1	146
48	Impact of soil heat on reassembly of bacterial communities in the rhizosphere microbiome and plant disease suppression. Ecology Letters, 2016, 19, 375-382.	6.4	143
49	Deciphering rhizosphere microbiome assembly of wild and modern common bean (Phaseolus vulgaris) in native and agricultural soils from Colombia. Microbiome, 2019, 7, 114.	11.1	140
50	Wheat Cultivar-Specific Selection of 2,4-Diacetylphloroglucinol-Producing Fluorescent Pseudomonas Species from Resident Soil Populations. Microbial Ecology, 2004, 48, 338-348.	2.8	136
51	Genotypic and Phenotypic Diversity of phID -Containing Pseudomonas Strains Isolated from the Rhizosphere of Wheat. Applied and Environmental Microbiology, 2000, 66, 1939-1946.	3.1	134
52	Involvement of Burkholderiaceae and sulfurous volatiles in disease-suppressive soils. ISME Journal, 2018, 12, 2307-2321.	9.8	131
53	Insect pathogenicity in plant-beneficial pseudomonads: phylogenetic distribution and comparative genomics. ISME Journal, 2016, 10, 2527-2542.	9.8	127
54	Polymorphisms within the prnD and pltC genes from pyrrolnitrin and pyoluteorin-producing Pseudomonas and Burkholderia spp FEMS Microbiology Ecology, 2003, 43, 21-34.	2.7	123

#	Article	IF	CITATIONS
55	Indexing the Pseudomonas specialized metabolome enabled the discovery of poaeamide B and the bananamides. Nature Microbiology, 2017, 2, 16197.	13.3	121
56	Influence of plant species on population dynamics, genotypic diversity and antibiotic production in the rhizosphere by indigenous Pseudomonas spp FEMS Microbiology Ecology, 2005, 52, 59-69.	2.7	120
57	Comparative Microbiome Analysis of a Fusarium Wilt Suppressive Soil and a Fusarium Wilt Conducive Soil From the Châteaurenard Region. Frontiers in Microbiology, 2018, 9, 568.	3.5	113
58	Fungal ABC Transporters and Microbial Interactions in Natural Environments. Molecular Plant-Microbe Interactions, 2002, 15, 1165-1172.	2.6	112
59	Functional, genetic and chemical characterization of biosurfactants produced by plant growth-promoting <i>Pseudomonas putida</i> 267. Journal of Applied Microbiology, 2009, 107, 546-556.	3.1	109
60	Impact of interspecific interactions on antimicrobial activity among soil bacteria. Frontiers in Microbiology, 2014, 5, 567.	3.5	109
61	The Novel Lipopeptide Poaeamide of the Endophyte <i>Pseudomonas poae</i> RE*1-1-14 Is Involved in Pathogen Suppression and Root Colonization. Molecular Plant-Microbe Interactions, 2015, 28, 800-810.	2.6	105
62	Comparative genomics and metabolic profiling of the genus Lysobacter. BMC Genomics, 2015, 16, 991.	2.8	103
63	Protozoan-Induced Regulation of Cyclic Lipopeptide Biosynthesis Is an Effective Predation Defense Mechanism for <i>Pseudomonas fluorescens</i> . Applied and Environmental Microbiology, 2009, 75, 6804-6811.	3.1	101
64	Diversity and Activity of Lysobacter Species from Disease Suppressive Soils. Frontiers in Microbiology, 2015, 6, 1243.	3.5	97
65	Breeding for soil-borne pathogen resistance impacts active rhizosphere microbiome of common bean. ISME Journal, 2018, 12, 3038-3042.	9.8	92
66	Defense Responses of Fusarium oxysporum to 2,4-Diacetylphloroglucinol, a Broad-Spectrum Antibiotic Produced by Pseudomonas fluorescens. Molecular Plant-Microbe Interactions, 2004, 17, 1201-1211.	2.6	91
67	Genome mining and metabolic profiling of the rhizosphere bacterium Pseudomonas sp. SH-C52 for antimicrobial compounds. Frontiers in Microbiology, 2015, 6, 693.	3.5	91
68	Modulation of plant chemistry by beneficial root microbiota. Natural Product Reports, 2018, 35, 398-409.	10.3	89
69	Characterization of CMR5c and CMR12a, novel fluorescentPseudomonasstrains from the cocoyam rhizosphere with biocontrol activity. Journal of Applied Microbiology, 2007, 103, 1007-1020.	3.1	88
70	Cross-kingdom similarities in microbiome functions. ISME Journal, 2015, 9, 1905-1907.	9.8	85
71	Plant Phenotypic and Transcriptional Changes Induced by Volatiles from the Fungal Root Pathogen Rhizoctonia solani. Frontiers in Plant Science, 2017, 8, 1262.	3.6	78
72	Multitrophic interactions in the rhizosphere microbiome of wheat: from bacteria and fungi to protists. FEMS Microbiology Ecology, 2020, 96, .	2.7	77

JOS M RAAIJMAKERS

#	Article	IF	CITATIONS
73	Effect of Organic Management of Soils on Suppressiveness to Gaeumannomyces graminis var. tritici and its Antagonist, Pseudomonas fluorescens. European Journal of Plant Pathology, 2005, 113, 417-435.	1.7	73
74	The Chemistry of Stress: Understanding the †̃Cry for Help' of Plant Roots. Metabolites, 2021, 11, 357.	2.9	73
75	Priming of Plant Growth Promotion by Volatiles of Root-Associated Microbacterium spp. Applied and Environmental Microbiology, 2018, 84, .	3.1	71
76	The <scp>Gac</scp> regulon of <i><scp>P</scp>seudomonas fluorescens</i> â€ <scp>SBW</scp> 25. Environmental Microbiology Reports, 2013, 5, 608-619.	2.4	67
77	Diversity and Functional Analysis of LuxR-Type Transcriptional Regulators of Cyclic Lipopeptide Biosynthesis in <i>Pseudomonas fluorescens</i> . Applied and Environmental Microbiology, 2009, 75, 4753-4761.	3.1	65
78	Friend or foe: genetic and functional characterization of plant endophytic <i><scp>P</scp>seudomonas aeruginosa</i> . Environmental Microbiology, 2013, 15, 764-779.	3.8	64
79	Deciphering microbial landscapes of fish eggs to mitigate emerging diseases. ISME Journal, 2014, 8, 2002-2014.	9.8	64
80	Conservation of the response regulator gene gacA in Pseudomonas species. Environmental Microbiology, 2003, 5, 1328-1340.	3.8	63
81	Embracing Community Ecology in Plant Microbiome Research. Trends in Plant Science, 2018, 23, 467-469.	8.8	63
82	Involvement of the ABC transporter BcAtrB and the laccase BcLCC2 in defence of <i>Botrytis cinerea</i> against the broadâ€spectrum antibiotic 2,4â€diacetylphloroglucinol. Environmental Microbiology, 2008, 10, 1145-1157.	3.8	60
83	Road MAPs to engineer host microbiomes. Current Opinion in Microbiology, 2018, 43, 46-54.	5.1	60
84	Biosynthetic Origin of the Antibiotic Cyclocarbamate Brabantamide A (SBâ€253514) in Plantâ€Associated <i>Pseudomonas</i> ChemBioChem, 2014, 15, 259-266.	2.6	59
85	Regulation of Cyclic Lipopeptide Biosynthesis in <i>Pseudomonas fluorescens</i> by the ClpP Protease. Journal of Bacteriology, 2009, 191, 1910-1923.	2.2	58
86	Healthy scents: microbial volatiles as new frontier in antibiotic research?. Current Opinion in Microbiology, 2018, 45, 84-91.	5.1	55
87	Inter- and intracellular colonization of Arabidopsis roots by endophytic actinobacteria and the impact of plant hormones on their antimicrobial activity. Antonie Van Leeuwenhoek, 2018, 111, 679-690.	1.7	54
88	Disentangling the genetic basis of rhizosphere microbiome assembly in tomato. Nature Communications, 2022, 13, .	12.8	53
89	Production of ammonia as a low-cost and long-distance antibiotic strategy by <i>Streptomyces</i> species. ISME Journal, 2020, 14, 569-583.	9.8	52
90	Unravelling the Microbiome of Eggs of the Endangered Sea Turtle Eretmochelys imbricata Identifies Bacteria with Activity against the Emerging Pathogen Fusarium falciforme. PLoS ONE, 2014, 9, e95206.	2.5	51

#	Article	IF	CITATIONS
91	Molecular and chemical dialogues in bacteria-protozoa interactions. Scientific Reports, 2015, 5, 12837.	3.3	51
92	Genomeâ€wide analysis of bacterial determinants of plant growth promotion and induced systemic resistance by <i>Pseudomonas fluorescens</i> . Environmental Microbiology, 2017, 19, 4638-4656.	3.8	51
93	Lipopeptide biosurfactant viscosin enhances dispersal of Pseudomonas fluorescens SBW25 biofilms. Microbiology (United Kingdom), 2015, 161, 2289-2297.	1.8	51
94	Plant functional group drives the community structure of saprophytic fungi in a grassland biodiversity experiment. Plant and Soil, 2021, 461, 91-105.	3.7	50
95	Identification of Traits Shared by Rhizosphere-Competent Strains of Fluorescent Pseudomonads. Microbial Ecology, 2012, 64, 725-737.	2.8	49
96	Biosynthetic genes and activity spectrum of antifungal polyynes from <scp><i>C</i></scp> <i>ollimonas fungivorans</i> â€ <scp>T</scp> er331. Environmental Microbiology, 2014, 16, 1334-1345.	3.8	48
97	Assessment of Genotypic Diversity of Antibiotic-Producing Pseudomonas Species in the Rhizosphere by Denaturing Gradient Gel Electrophoresis. Applied and Environmental Microbiology, 2005, 71, 993-1003.	3.1	47
98	Diversity and activity of biosurfactant-producing Pseudomonas in the rhizosphere of black pepper in Vietnam. Journal of Applied Microbiology, 2008, 104, 839-851.	3.1	46
99	Model membrane studies for characterization of different antibiotic activities of lipopeptides from Pseudomonas. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 566-573.	2.6	46
100	Investigations into the Biosynthesis, Regulation, and Selfâ€Resistance of Toxoflavin in <i>Pseudomonas protegens</i> Pfâ€5. ChemBioChem, 2015, 16, 1782-1790.	2.6	44
101	Volatiles of pathogenic and non-pathogenic soil-borne fungi affect plant development and resistance to insects. Oecologia, 2019, 190, 589-604.	2.0	43
102	Role of the GacS Sensor Kinase in the Regulation of Volatile Production by Plant Growth-Promoting Pseudomonas fluorescens SBW25. Frontiers in Plant Science, 2016, 7, 1706.	3.6	42
103	Linking ecology and plant pathology to unravel the importance of soil-borne fungal pathogens in species-rich grasslands. European Journal of Plant Pathology, 2019, 154, 141-156.	1.7	42
104	Resistance Breeding of Common Bean Shapes the Physiology of the Rhizosphere Microbiome. Frontiers in Microbiology, 2019, 10, 2252.	3.5	41
105	Genetic and Phenotypic Diversity of <i>Sclerotium rolfsii</i> in Groundnut Fields in Central Vietnam. Plant Disease, 2012, 96, 389-397.	1.4	40
106	Cyclic Lipopeptide Surfactant Production by <i>Pseudomonas fluorescens</i> SS101 Is Not Required for Suppression of Complex <i>Pythium</i> spp. Populations. Phytopathology, 2007, 97, 1348-1355.	2.2	38
107	Successive plant growth amplifies genotype-specific assembly of the tomato rhizosphere microbiome. Science of the Total Environment, 2021, 772, 144825.	8.0	38
108	Harnessing the microbiome to control plant parasitic weeds. Current Opinion in Microbiology, 2019, 49, 26-33.	5.1	37

#	Article	IF	CITATIONS
109	Diversity of Aquatic Pseudomonas Species and Their Activity against the Fish Pathogenic Oomycete Saprolegnia. PLoS ONE, 2015, 10, e0136241.	2.5	36
110	Effect of Mixed and Single Crops on Disease Suppressiveness of Soils. Phytopathology, 2005, 95, 1325-1332.	2.2	35
111	Cellular Responses of the Late Blight Pathogen <i>Phytophthora infestans</i> to Cyclic Lipopeptide Surfactants and Their Dependence on G Proteins. Applied and Environmental Microbiology, 2009, 75, 4950-4957.	3.1	35
112	Polymorphisms within the and genes from pyrrolnitrin and pyoluteorin-producing and spp FEMS Microbiology Ecology, 2003, 43, 21-34.	2.7	34
113	Membrane Interactions of Natural Cyclic Lipodepsipeptides of the Viscosin Group. Biochimica Et Biophysica Acta - Biomembranes, 2017, 1859, 331-339.	2.6	34
114	Challenges and opportunities in harnessing soil disease suppressiveness for sustainable pasture production. Soil Biology and Biochemistry, 2016, 95, 100-111.	8.8	33
115	Secondary Metabolism and Interspecific Competition Affect Accumulation of Spontaneous Mutants in the GacS-GacA Regulatory System in <i>Pseudomonas protegens</i> . MBio, 2018, 9, .	4.1	33
116	Designing a home for beneficial plant microbiomes. Current Opinion in Plant Biology, 2021, 62, 102025.	7.1	32
117	The <scp>R</scp> sm regulon of plant growthâ€promoting <scp><i>P</i></scp> <i>seudomonas fluorescens</i> â€ <scp>SS</scp> 101: role of small <scp>RNA</scp> s in regulation of lipopeptide biosynthesis. Microbial Biotechnology, 2015, 8, 296-310.	4.2	31
118	Involvement of phenazines and lipopeptides in interactions between Pseudomonas species and Sclerotium rolfsii, causal agent of stem rot disease on groundnut. Journal of Applied Microbiology, 2012, 112, 390-403.	3.1	29
119	Siderophore receptor PupA as a marker to monitor wild-type Pseudomonas putida WCS358 in natural environments. Applied and Environmental Microbiology, 1994, 60, 1184-1190.	3.1	29
120	The Minimal Rhizosphere Microbiome. , 2015, , 411-417.		28
121	Dissecting Disease-Suppressive Rhizosphere Microbiomes by Functional Amplicon Sequencing and 10× Metagenomics. MSystems, 2021, 6, e0111620.	3.8	27
122	Extension of Plant Phenotypes by the Foliar Microbiome. Annual Review of Plant Biology, 2021, 72, 823-846.	18.7	27
123	Extracting the GEMs: Genotype, Environment, and Microbiome Interactions Shaping Host Phenotypes. Frontiers in Microbiology, 2020, 11, 574053.	3.5	25
124	Mangotoxin production of Pseudomonas syringae pv. syringae is regulated by MgoA. BMC Microbiology, 2014, 14, 46.	3.3	24
125	Editorial: Smelly Fumes: Volatile-Mediated Communication between Bacteria and Other Organisms. Frontiers in Microbiology, 2016, 7, 2031.	3.5	23
126	Living on the edge: emergence of spontaneous <i>gac</i> mutations in <i>Pseudomonas protegens</i> during swarming motility. Environmental Microbiology, 2016, 18, 3453-3465.	3.8	23

#	Article	IF	CITATIONS
127	Microbial and volatile profiling of soils suppressive to <i>Fusarium culmorum</i> of wheat. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20192527.	2.6	23
128	Impacts of long-term plant residue management on soil organic matter quality, Pseudomonas community structure and disease suppressiveness. Soil Biology and Biochemistry, 2019, 135, 396-406.	8.8	22
129	Isolation, characterization and comparative analysis of plant-associated bacteria for suppression of soil-borne diseases of field-grown groundnut in Vietnam. Biological Control, 2018, 121, 256-262.	3.0	19
130	Impact of <i>Pseudomonas</i> H6 surfactant on all external life cycle stages of the fish parasitic ciliate <i>Ichthyophthirius multifiliis</i> . Journal of Fish Diseases, 2018, 41, 1147-1152.	1.9	19
131	Impact of root-associatedÂstrains of three Paraburkholderia species on primary and secondary metabolism of Brassica oleracea. Scientific Reports, 2021, 11, 2781.	3.3	19
132	Ecology and functional potential of phyllosphere yeasts. Trends in Plant Science, 2022, 27, 1109-1123.	8.8	19
133	Discovery of new regulatory genes of lipopeptide biosynthesis in <i>Pseudomonas fluorescens</i> . FEMS Microbiology Letters, 2014, 356, 166-175.	1.8	18
134	Lipopeptide biosynthesis in Pseudomonas fluorescens is regulated by the protease complex ClpAP. BMC Microbiology, 2015, 15, 29.	3.3	18
135	Antagonism between two root-associated beneficial Pseudomonas strains does not affect plant growth promotion and induced resistance against a leaf-chewing herbivore. FEMS Microbiology Ecology, 2017, 93, .	2.7	18
136	Wave-like Distribution Patterns of Gfp-marked Pseudomonas fluorescens Along Roots of Wheat Plants Grown in Two Soils. Microbial Ecology, 2008, 55, 466-475.	2.8	16
137	Volatiles from soilâ€borne fungi affect directional growth of roots. Plant, Cell and Environment, 2021, 44, 339-345.	5.7	16
138	Disentangling soil microbiome functions by perturbation. Environmental Microbiology Reports, 2021, 13, 582-590.	2.4	16
139	Potential for Biocontrol of Hairy Root Disease by a Paenibacillus Clade. Frontiers in Microbiology, 2017, 8, 447.	3.5	15
140	Dispersal of wild-type and genetically-modified Pseudomonas spp from treated seeds or soil to aerial parts of radish plants. Soil Biology and Biochemistry, 1995, 27, 1473-1478.	8.8	13
141	Restoring degraded microbiome function with self-assembled communities. FEMS Microbiology Ecology, 2020, 96, .	2.7	11
142	DiSCount: computer vision for automated quantification of Striga seed germination. Plant Methods, 2020, 16, 60.	4.3	11
143	Plant neighbours can make or break the disease transmission chain of a fungal root pathogen. New Phytologist, 2022, 233, 1303-1316.	7.3	11
144	Towards meaningful scales in ecosystem microbiome research. Environmental Microbiology, 2021, 23, 1-4.	3.8	10

#	Article	IF	CITATIONS
145	Gacâ€mediated changes in pyrroloquinoline quinone biosynthesis enhance the antimicrobial activity of <scp><i>P</i></scp> <i>seudomonas fluorescens</i> â€ <scp>SBW</scp> 25. Environmental Microbiology Reports, 2015, 7, 139-147.	2.4	8
146	Elucidating the Diversity of Aquatic Microdochium and Trichoderma Species and Their Activity against the Fish Pathogen Saprolegnia diclina. International Journal of Molecular Sciences, 2016, 17, 140.	4.1	7
147	Discovery of Thanafactin A, a Linear, Proline-Containing Octalipopeptide from <i>Pseudomonas</i> sp. SH-C52, Motivated by Genome Mining. Journal of Natural Products, 2021, 84, 101-109.	3.0	7
148	Fungal volatiles influence plant defence against aboveâ€ground and belowâ€ground herbivory. Functional Ecology, 2020, 34, 2259-2269.	3.6	6
149	Draft Genome Sequence of Lipopeptide-Producing Strain Pseudomonas fluorescens DSM 11579 and Comparative Genomics with <i>Pseudomonas</i> sp. Strain SH-C52, a Closely Related Lipopeptide-Producing Strain. Microbiology Resource Announcements, 2020, 9, .	0.6	6
150	Optimizing Biocontrol Activity of Paenibacillus xylanexedens for Management of Hairy Root Disease in Tomato Grown in Hydroponic Greenhouses. Agronomy, 2021, 11, 817.	3.0	6
151	Exploring the Volatiles Released from Roots of Wild and Domesticated Tomato Plants under Insect Attack. Molecules, 2022, 27, 1612.	3.8	6
152	Metabolic signatures of rhizobacteriaâ€induced plant growth promotion. Plant, Cell and Environment, 2022, 45, 3086-3099.	5.7	6
153	Volatiles from the fungus Fusarium oxysporum affect interactions of Brassica rapa plants with root herbivores. Ecological Entomology, 2021, 46, 240-248.	2.2	4
154	Effects of Sulfur Assimilation in Pseudomonas fluorescens SS101 on Growth, Defense, and Metabolome of Different Brassicaceae. Biomolecules, 2021, 11, 1704.	4.0	4
155	No evidence of modulation of indirect plant resistance of Brassica rapa plants by volatiles from soilâ€borne fungi. Ecological Entomology, 2020, 45, 1200-1211.	2.2	2
156	Plant- and Bacteria-Derived Compounds with Anti-Philasterides dicentrarchi Activity. Pathogens, 2022, 11, 267.	2.8	2
157	Bacillus subtilis EA-CB0575 inoculation of micropropagated banana plants suppresses black Sigatoka and induces changes in the root microbiome. Plant and Soil, 2022, 479, 513-527.	3.7	2
158	Influence of Environmental Factors on the Disease Cycle of White Rust, Caused by Albugo Candida. Developments in Plant Pathology, 2004, , 107-118.	0.1	1
159	UNRAVELING THE SENSES OF PHYTOPHTHORA; LEADS TO NOVEL CONTROL STRATEGIES?. Acta Horticulturae, 2009, , 41-50.	0.2	1
160	Host Specialisation of the Oomycete Albugo Candida. Developments in Plant Pathology, 2004, , 119-139.	0.1	0
161	Molecular detection and quantification of the <i>Striga</i> seedbank in agricultural soils. Weed Research, 2022, 62, 181-191.	1.7	0