
Hanna Fabczak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/795111/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	PCD Genes—From Patients to Model Organisms and Back to Humans. International Journal of Molecular Sciences, 2022, 23, 1749.	4.1	9
2	Profesor Andrzej Grębecki (1934-2021) - badacz fizjologii ruchu komórek, nauczyciel, wychowawca. Cosmos: Problems of Biological Sciences, 2021, 70, 1-7.	0.1	0
3	Composition and function of the C1b/C1f region in the ciliary central apparatus. Scientific Reports, 2021, 11, 11760.	3.3	16
4	Intrinsic and Extrinsic Factors Affecting Microtubule Dynamics in Normal and Cancer Cells. Molecules, 2020, 25, 3705.	3.8	38
5	CacyBP/SIP in the rat spinal cord in norm and after transection – Influence on the phosphorylation state of ERK1/2 and p38 kinases. Neurochemistry International, 2020, 138, 104757.	3.8	4
6	The LisH Domain-Containing N-Terminal Fragment is Important for the Localization, Dimerization, and Stability of Katnal2 in Tetrahymena. Cells, 2020, 9, 292.	4.1	6
7	Ciliary Proteins: Filling the Gaps. Recent Advances in Deciphering the Protein Composition of Motile Ciliary Complexes. Cells, 2019, 8, 730.	4.1	32
8	Rare Human Diseases: Model Organisms in Deciphering the Molecular Basis of Primary Ciliary Dyskinesia. Cells, 2019, 8, 1614.	4.1	25
9	Role of the Novel Hsp90 Co-Chaperones in Dynein Arms' Preassembly. International Journal of Molecular Sciences, 2019, 20, 6174.	4.1	27
10	Ciliary proteins Fap43 and Fap44 interact with each other and are essential for proper cilia and flagella beating. Cellular and Molecular Life Sciences, 2018, 75, 4479-4493.	5.4	46
11	Multiple phosphorylation sites on γâ€ŧubulin are essential and contribute to the biogenesis of basal bodies in <i>Tetrahymena</i> . Journal of Cellular Physiology, 2018, 233, 8648-8665.	4.1	4
12	Intraspinal Grafting of Serotonergic Neurons Modifies Expression of Genes Important for Functional Recovery in Paraplegic Rats. Neural Plasticity, 2018, 2018, 1-15.	2.2	7
13	Signal Recognition in Lower Organisms: Light-Induced Control of Cell Movement in the Ciliates Blepharisma and Stentor. , 2018, , 1128-1135.		0
14	Interaction of a Novel Chaperone PhLP2A With the Heat Shock Protein Hsp90. Journal of Cellular Biochemistry, 2017, 118, 420-429.	2.6	11
15	Regulation of katanin activity in the ciliate <i>Tetrahymena thermophila</i> . Molecular Microbiology, 2017, 103, 134-150.	2.5	11
16	Tubulin Post-Translational Modifications and Microtubule Dynamics. International Journal of Molecular Sciences, 2017, 18, 2207.	4.1	115
17	Calcyclin Binding Protein/Siah-1 Interacting Protein Is a Hsp90 Binding Chaperone. PLoS ONE, 2016, 11, e0156507.	2.5	23
18	Cytoplasmic Domain of MscS Interacts with Cell Division Protein FtsZ: A Possible Non-Channel Function of the Mechanosensitive Channel in Escherichia Coli. PLoS ONE, 2015, 10, e0127029.	2.5	17

Hanna Fabczak

#	Article	IF	CITATIONS
19	The CSC proteins FAP61 and FAP251 build the basal substructures of radial spoke 3 in cilia. Molecular Biology of the Cell, 2015, 26, 1463-1475.	2.1	58
20	Calcyclin binding protein and Siah-1 interacting protein in Alzheimer's disease pathology: neuronal localization and possible function. Neurobiology of Aging, 2013, 34, 1380-1388.	3.1	32
21	Cell cycle-dependent modulations of fenestrin expression in Tetrahymena pyriformis. European Journal of Protistology, 2013, 49, 564-574.	1.5	2
22	PHLP2 is essential and plays a role in ciliogenesis and microtubule assembly in <i>Tetrahymena thermophila</i> . Journal of Cellular Physiology, 2013, 228, 2175-2189.	4.1	18
23	Effect of phosducin silencing on the photokinetic motile response of Blepharisma japonicum. Photochemical and Photobiological Sciences, 2011, 10, 19-24.	2.9	8
24	Visualization of the interaction between Gβγ and tubulin during light-induced cell elongation of Blepharisma japonicum. Photochemical and Photobiological Sciences, 2010, 9, 1101-1110.	2.9	6
25	A rhodopsin immunoanalog in the related photosensitive protozoans Blepharisma japonicum and Stentor coeruleus. Photochemical and Photobiological Sciences, 2008, 7, 1041-1045.	2.9	7
26	Acquisition of cell polarity during cell cycle and oral replacement in Tetrahymena. International Journal of Developmental Biology, 2008, 52, 249-258.	0.6	7
27	Phosducin interacts with the G-protein βγ-dimer of ciliate protozoan <i>Blepharisma japonicum</i> upon illumination. Journal of Experimental Biology, 2007, 210, 4213-4223.	1.7	6
28	A Videomicroscopic Study of the Effect of l-cis-Diltiazem on the Photobehavior of Stentor coeruleus¶. Photochemistry and Photobiology, 2007, 77, 339-342.	2.5	0
29	Photosensory transduction in unicellular eukaryotes: A comparison between related ciliates Blepharisma japonicum and Stentor coeruleus and photoreceptor cells of higher organisms. Journal of Photochemistry and Photobiology B: Biology, 2006, 83, 163-171.	3.8	23
30	Detection and localization of a putative cyclic-GMP-activated channel protein in the protozoan ciliate Stentor coeruleus. Protoplasma, 2006, 227, 139-146.	2.1	4
31	Alterations of ciliate phosducin phosphorylation in Blepharisma japonicum cells. Journal of Photochemistry and Photobiology B: Biology, 2005, 79, 135-143.	3.8	5
32	Identification of Possible Phosducins in the Ciliate Blepharisma japonicum. Protist, 2004, 155, 181-192.	1.5	8
33	A Videomicroscopic Study of the Effect of l-cis-Diltiazem on the Photobehavior of Stentor coeruleus¶. Photochemistry and Photobiology, 2003, 77, 339.	2.5	3
34	Contribution of phosphoinositide-dependent signalling to photomotility of Blepharisma ciliate. Journal of Photochemistry and Photobiology B: Biology, 2000, 55, 120-127.	3.8	11
35	Light Induces Inositol Trisphosphate Elevation in <i>Blepharisma japonicum</i> . Photochemistry and Photobiology, 1999, 69, 254-258.	2.5	2
36	Light Induces Inositol Trisphosphate Elevation in Blepharisma japonicum. Photochemistry and Photobiology, 1999, 69, 254.	2.5	8

Hanna Fabczak

#	Article	IF	CITATIONS
37	Photosensory transduction in ciliates. Role of intracellular pH and comparison between Stentor coeruleus and Blepharisma japonicum. Journal of Photochemistry and Photobiology B: Biology, 1993, 21, 47-52.	3.8	17
38	PHOTOSENSORY TRANSDUCTION IN CILIATES. I. AN ANALYSIS OF LIGHT-INDUCED ELECTRICAL AND MOTILE RESPONSES IN Stentor coeruleus. Photochemistry and Photobiology, 1993, 57, 696-701.	2.5	31
39	PHOTOSENSORY TRANSDUCTION IN CILIATES. II. POSSIBLE ROLE OF G-PROTEIN AND cGMP IN Stentor coeruleus. Photochemistry and Photobiology, 1993, 57, 702-706.	2.5	22
40	PHOTOSENSORY TRANSDUCTION IN CILIATES. III. THE TEMPORAL RELATION BETWEEN MEMBRANE POTENTIALS AND PHOTOMOTILE RESPONSES IN Blepharisma japonic urn. Photochemistry and Photobiology, 1993, 57, 872-876.	2.5	23
41	PHOTOSENSORY TRANSDUCTION IN CILIATES. IV. MODULATION OF THE PHOTOMOVEMENT RESPONSE OF Blepharisma japonicum BY cGMP. Photochemistry and Photobiology, 1993, 57, 889-892.	2.5	16