
Neil A Fox

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7950938/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mapping the Energetics of Defect States in Cu ₂ ZnSnS ₄ films and the Impact of Sb Doping. ACS Applied Energy Materials, 2022, 5, 3933-3940.	2.5	8
2	Empty‣tate Band Mapping Using Momentumâ€Resolved Secondary Electron Emission. Advanced Functional Materials, 2021, 31, 2007319.	7.8	4
3	A review of surface functionalisation of diamond for thermionic emission applications. Carbon, 2021, 171, 532-550.	5.4	26
4	An investigation into the surface termination and near-surface bulk doping of oxygen-terminated diamond with lithium at various annealing temperatures. MRS Advances, 2021, 6, 311-320.	0.5	2
5	Experimental Studies of Electron Affinity and Work Function from Aluminium on Oxidized Diamond (100) and (111) Surfaces. Physica Status Solidi (B): Basic Research, 2021, 258, 2100027.	0.7	5
6	A diamond gammavoltaic cell utilizing surface conductivity and its response to different photon interaction mechanisms. Materials Today Energy, 2021, 21, 100688.	2.5	3
7	Structure and electronic properties of tin monoxide (SnO) and lithiated SnO terminated diamond (1 0) Tj ETQq1 149962.	1 0.78431 3.1	4 rgBT /Ovei 14
8	Spectroscopic insight of low energy electron emission from diamond surfaces. Carbon, 2021, 185, 376-383.	5.4	1
9	Modification of the Surface Structure and Electronic Properties of Diamond (100) with Tin as a Surface Termination: A Density Functional Theory Study. Journal of Physical Chemistry C, 2021, 125, 25165-25174.	1.5	3
10	Spectral functions of CVD grown MoS2 monolayers after chemical transfer onto Au surface. Applied Surface Science, 2020, 532, 147390.	3.1	11
11	Diamond chemical vapor deposition using a zero-total gas flow environment. Diamond and Related Materials, 2020, 109, 108011.	1.8	3
12	Correlating Thermionic Emission with Specific Surface Reconstructions in a <100> Hydrogenated Single-Crystal Diamond. ACS Applied Materials & Interfaces, 2020, 12, 26534-26542.	4.0	4
13	Graphene-diamond junction photoemission microscopy and electronic interactions. Nano Express, 2020, 1, 020011.	1.2	8
14	Correlation between crystal purity and the charge density wave in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mn>1</mml:mn><mml:mi>TPhysical Review Materials, 2020, 4, .</mml:mi></mml:mrow></mml:math 	> ong ml:mo	o>£2²
15	Solar thermal characterization of micropatterned high temperature selective surfaces. Journal of Photonics for Energy, 2020, 10, 1.	0.8	0
16	Surface-Alloying during Pb Underpotential Deposition on Au. ECS Meeting Abstracts, 2020, MA2020-02, 1499-1499.	0.0	0
17	Electrodeposition of Au _x Ag _{1-X} Alloys from Thiosulfate Solutions. ECS Meeting Abstracts, 2020, MA2020-02, 1495-1495.	0.0	0
18	Electronic Structure Tunability of Diamonds by Surface Functionalization. Journal of Physical Chemistry C, 2019, 123, 4168-4177.	1.5	20

NEIL A FOX

#	Article	IF	CITATIONS
19	Electrochemical Modification and Characterization of Topological Insulator Single Crystals. Langmuir, 2019, 35, 2983-2988.	1.6	7
20	Surface Investigation on Electrochemically Deposited Lead on Gold. Surfaces, 2019, 2, 56-68.	1.0	4
21	Anodization study of epitaxial graphene: insights on the oxygen evolution reaction of graphitic materials. Nanotechnology, 2019, 30, 285701.	1.3	2
22	Characterisation of thermionic emission current with a laser-heated system. Review of Scientific Instruments, 2019, 90, 045110.	0.6	5
23	Microscopic insight into the single step growth of in-plane heterostructures between graphene and hexagonal boron nitride. Nano Research, 2019, 12, 675-682.	5.8	11
24	Surface structure of few layer graphene. Carbon, 2018, 136, 255-261.	5.4	44
25	Mapping Shunting Paths at the Surface of Cu2ZnSn(S,Se)4 Films via Energy-Filtered Photoemission Microscopy. IScience, 2018, 9, 36-46.	1.9	10
26	Impact of Sb and Na Doping on the Surface Electronic Landscape of Cu ₂ ZnSnS ₄ Thin Films. ACS Energy Letters, 2018, 3, 2977-2982.	8.8	24
27	A theoretical study of substitutional boron–nitrogen clusters in diamond. Journal of Physics Condensed Matter, 2018, 30, 425501.	0.7	10
28	A Perspective on the Application of Spatially Resolved ARPES for 2D Materials. Nanomaterials, 2018, 8, 284.	1.9	47
29	Molybdenum gratings as a highâ€ŧemperature refractory platform for plasmonic heat generators in the infrared. Micro and Nano Letters, 2018, 13, 1325-1328.	0.6	5
30	Tellurium-doped lanthanum manganite as catalysts for the oxygen reduction reaction. MRS Communications, 2017, 7, 193-198.	0.8	9
31	Investigations of the co-doping of boron and lithium into CVD diamond thin films. Diamond and Related Materials, 2017, 76, 115-122.	1.8	17
32	Improving the Efficiency of a Thermionic Energy Converter Using Dual Electric Fields and Electron Beaming. Frontiers in Mechanical Engineering, 2017, 3, .	0.8	5
33	Beta Radiation Enhanced Thermionic Emission from Diamond Thin Films. Frontiers in Mechanical Engineering, 2017, 3, .	0.8	10
34	Scanning Tunneling Microscopy: Imaging the Predicted Isomerism of Oligo(aniline)s: A Scanning Tunneling Microscopy Study (Small 28/2015). Small, 2015, 11, 3429-3429.	5.2	0
35	Imaging the Predicted Isomerism of Oligo(aniline)s: A Scanning Tunneling Microscopy Study. Small, 2015, 11, 3430-3434.	5.2	11
36	Measurement of the secondary electron emission from CVD diamond films using phosphor screen detectors. Journal of Instrumentation, 2015, 10, P03004-P03004.	0.5	4

NEIL A FOX

#	Article	IF	CITATIONS
37	Incorporation of lithium and nitrogen into CVD diamond thin films. Diamond and Related Materials, 2014, 44, 1-7.	1.8	23
38	Photoelectron emission from lithiated diamond. Physica Status Solidi (A) Applications and Materials Science, 2014, 211, 2209-2222.	0.8	30
39	In-situ Incorporation of Lithium and Nitrogen into CVD Diamond Thin Films. Materials Research Society Symposia Proceedings, 2012, 1511, 1.	0.1	1
40	Ultra-thin metal films for enhanced solar absorption. Nano Energy, 2012, 1, 777-782.	8.2	43
41	Electrochemical Properties of Two Dimensional Assemblies of Insulating Diamond Particles. Langmuir, 2011, 27, 5112-5118.	1.6	17
42	The Li-adsorbed C(100)-(1x1):O Diamond Surface. Materials Research Society Symposia Proceedings, 2011, 1282, 163.	0.1	8
43	Lithium monolayers on single crystal C(100) oxygen-terminated diamond. Materials Research Society Symposia Proceedings, 2011, 1282, 169.	0.1	5
44	A study on the formation of titania nanopillars during porous anodic alumina through-mask anodization of Ti substrates. Electrochimica Acta, 2010, 56, 203-210.	2.6	13
45	Toward a Single ZnO Nanowire Homojunction. Journal of Physical Chemistry C, 2010, 114, 21338-21341.	1.5	12
46	Through-mask anodization of titania dot- and pillar-like nanostructures on bulk Ti substrates using a nanoporous anodic alumina mask. Nanotechnology, 2009, 20, 135305.	1.3	25
47	Hydrothermal Growth of ZnO Nanorods Aligned Parallel to the Substrate Surface. Journal of Physical Chemistry C, 2008, 112, 9234-9239.	1.5	34
48	Field emission observed from metal-diamond junctions revealed by atomic force microscopy. Applied Physics Letters, 2007, 90, 242109.	1.5	3
49	Growth of nanostructured ZnO thin films on sapphire. Applied Physics A: Materials Science and Processing, 2007, 89, 49-55.	1.1	26
50	Experimental and Modeling Studies of B Atom Number Density Distributions in Hot Filament Activated B2H6/H2 and B2H6/CH4/H2 Gas Mixtures. Journal of Physical Chemistry A, 2006, 110, 2868-2875.	1.1	41
51	Synthesis of Aligned Arrays of Ultrathin ZnO Nanotubes on a Si Wafer Coated with a Thin ZnO Film. Advanced Materials, 2005, 17, 2477-2481.	11.1	329
52	Patterned diamond particle films. Journal of Applied Physics, 2000, 87, 8187-8191.	1.1	37
53	Properties of electron field emitters prepared by selected area deposition of CVD diamond carbon films. Diamond and Related Materials, 2000, 9, 1263-1269.	1.8	14
54	The effect of diamond surface termination species upon field emission properties. Diamond and Related Materials, 1998, 7, 671-676.	1.8	39

NEIL A FOX

#	Article	IF	CITATIONS
55	Field emission from chemical vapor deposited diamond and diamond-like carbon films: Investigations of surface damage and conduction mechanisms. Journal of Applied Physics, 1998, 84, 1618-1625.	1.1	54
56	Field emission conduction mechanisms in chemical vapor deposited diamond and diamondlike carbon films. Applied Physics Letters, 1998, 72, 2182-2184.	1.5	63
57	Field emission properties of diamond films of different qualities. Applied Physics Letters, 1997, 71, 2337-2339.	1.5	48
58	Production and characterisation of amorphic diamond films produced by pulsed laser ablation of graphite. Diamond and Related Materials, 1997, 6, 569-573.	1.8	16
59	Deposition of CVD diamond onto boron carbide substrates. Diamond and Related Materials, 1997, 6, 450-455.	1.8	11
60	Field-emission studies of boron-doped CVD diamond films following surface treatments. Diamond and Related Materials, 1997, 6, 1135-1142.	1.8	14
61	Field emission properties of diode devices based on amorphic diamond-Si heterojunctions. Journal of Applied Physics, 1997, 81, 1505-1508.	1.1	12
62	Growth and field emission properties of multiply twinned diamond films with quintuplet wedges. Applied Physics Letters, 1996, 69, 2825-2827.	1.5	10
63	<i>Ex situ</i> Ge-doping of CZTS nanocrystals and CZTSSe solar absorber films. Faraday Discussions, 0, 239, 70-84.	1.6	2