Francisco Peñagaricano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/795077/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Gene mapping, gene-set analysis, and genomic prediction of postpartum blood calcium in Holstein cows. Journal of Dairy Science, 2022, 105, 525-534.	3.4	6
2	The effects of course format, sex, semester, and institution on student performance in an undergraduate animal science course. Translational Animal Science, 2022, 6, txac004.	1.1	0
3	Progesterone-dependent and progesterone-independent modulation of luminal epithelial transcription to support pregnancy in cattle. Physiological Genomics, 2022, 54, 71-85.	2.3	7
4	Impact of Fluoxetine Treatment and Folic Acid Supplementation on the Mammary Gland Transcriptome During Peak Lactation. Frontiers in Pharmacology, 2022, 13, 828735.	3.5	3
5	Revealing the genetic basis of eyelid pigmentation in Hereford cattle. Journal of Animal Science, 2022, 100, .	0.5	6
6	Genetic Evaluations of Stillbirth for Five United States Dairy Breeds: A Data-Resource Feasibility Study. Frontiers in Genetics, 2022, 13, 819678.	2.3	4
7	Identification of Long Noncoding RNAs Involved in Eyelid Pigmentation of Hereford Cattle. Frontiers in Genetics, 2022, 13, .	2.3	0
8	Deciphering the genetic basis of male fertility in Italian Brown Swiss dairy cattle. Scientific Reports, 2022, 12, .	3.3	7
9	Estimates of genetic parameters for feeding behavior traits and their associations with feed efficiency in Holstein cows. Journal of Dairy Science, 2022, 105, 7564-7574.	3.4	11
10	Integrating genomic and infrared spectral data improves the prediction of milk protein composition in dairy cattle. Genetics Selection Evolution, 2021, 53, 29.	3.0	7
11	Host genetics exerts lifelong effects upon hindgut microbiota and its association with bovine growth and immunity. ISME Journal, 2021, 15, 2306-2321.	9.8	39
12	Histological and transcriptomic analysis of adipose and muscle of dairy calves supplemented with 5-hydroxytryptophan. Scientific Reports, 2021, 11, 9665.	3.3	5
13	Assessing feed efficiency in early and mid lactation and its associations with performance and health in Holstein cows. Journal of Dairy Science, 2021, 104, 5493-5507.	3.4	11
14	Targeted sequencing reveals candidate causal variants for dairy bull subfertility. Animal Genetics, 2021, 52, 509-513.	1.7	9
15	Effects of maternal gestational diet, with or without methionine, on muscle transcriptome of Bos indicus-influenced beef calves following a vaccine-induced immunological challenge. PLoS ONE, 2021, 16, e0253810.	2.5	3
16	Effect of natural pre-luteolytic prostaglandin F2α pulses on the bovine luteal transcriptome during spontaneous luteal regressionâ€. Biology of Reproduction, 2021, 105, 1016-1029.	2.7	8
17	Genes and pathways associated with pregnancy loss in dairy cattle. Scientific Reports, 2021, 11, 13329.	3.3	22
18	Comparison of Single-Breed and Multi-Breed Training Populations for Infrared Predictions of Novel Phenotypes in Holstein Cows. Animals, 2021, 11, 1993.	2.3	2

#	Article	IF	CITATIONS
19	Review: Genetic selection of high-yielding dairy cattle toward sustainable farming systems in a rapidly changing world. Animal, 2021, 15, 100292.	3.3	90
20	Evaluating the performance of machine learning methods and variable selection methods for predicting difficult-to-measure traits in Holstein dairy cattle using milk infrared spectral data. Journal of Dairy Science, 2021, 104, 8107-8121.	3.4	16
21	Evaluation of bull fertility in Italian Brown Swiss dairy cattle using cow field data. Journal of Dairy Science, 2021, 104, 10896-10904.	3.4	5
22	Maternal methionine supplementation during gestation alters alternative splicing and DNA methylation in bovine skeletal muscle. BMC Genomics, 2021, 22, 780.	2.8	9
23	Genomic Analysis of Visceral Fat Accumulation in Holstein Cows. Frontiers in Genetics, 2021, 12, 803216.	2.3	Ο
24	Associations between maternal characteristics and health, survival, and performance of dairy heifers from birth through first lactation. Journal of Dairy Science, 2020, 103, 823-839.	3.4	14
25	Whole Genome Sequence Data Provides Novel Insights Into the Genetic Architecture of Meat Quality Traits in Beef. Frontiers in Genetics, 2020, 11, 538640.	2.3	12
26	Differential network analysis of bovine muscle reveals changes in gene coexpression patterns in response to changes in maternal nutrition. BMC Genomics, 2020, 21, 684.	2.8	12
27	Transcriptomic analysis of eyelid pigmentation in Hereford cattle. Animal Genetics, 2020, 51, 935-939.	1.7	2
28	Whole-genome homozygosity mapping reveals candidate regions affecting bull fertility in US Holstein cattle. BMC Genomics, 2020, 21, 338.	2.8	23
29	Genetic dissection of reproductive performance of dairy cows under heat stress. Animal Genetics, 2020, 51, 511-520.	1.7	14
30	Deep learning versus parametric and ensemble methods for genomic prediction of complex phenotypes. Genetics Selection Evolution, 2020, 52, 12.	3.0	106
31	Gene mapping and genomic prediction of bull fertility using sex chromosome markers. Journal of Dairy Science, 2020, 103, 3304-3311.	3.4	22
32	Genetics and genomics of dairy cattle. , 2020, , 101-119.		3
33	Gestational and lactational exposure to gossypol alters the testis transcriptome. BMC Genomics, 2020, 21, 59.	2.8	10
34	Early genomic prediction of daughter pregnancy rate is associated with improved reproductive performance in Holstein dairy cows. Journal of Dairy Science, 2020, 103, 3312-3324.	3.4	23
35	Integration of wholeâ€genome DNA methylation data with RNA sequencing data to identify markers for bull fertility. Animal Genetics, 2020, 51, 502-510.	1.7	17
36	Across-country genomic prediction of bull fertility in Jersey dairy cattle. Journal of Dairy Science, 2020, 103, 11618-11627.	3.4	9

Francisco Peñagaricano

#	Article	IF	CITATIONS
37	Introduction: ADSA and Interbull Joint Breeding and Genetics Symposia. Journal of Dairy Science, 2020, 103, 5275-5277.	3.4	0
38	Genomic merit for reproductive traits. I: Estrous characteristics and fertility in Holstein heifers. Journal of Dairy Science, 2019, 102, 6624-6638.	3.4	18
39	Genomic merit for reproductive traits. II: Physiological responses of Holstein heifers. Journal of Dairy Science, 2019, 102, 6639-6648.	3.4	13
40	Association of lipid-related genes implicated in conceptus elongation with female fertility traits in dairy cattle. Journal of Dairy Science, 2019, 102, 10020-10029.	3.4	12
41	Whole Genome Mapping Reveals Novel Genes and Pathways Involved in Milk Production Under Heat Stress in US Holstein Cows. Frontiers in Genetics, 2019, 10, 928.	2.3	52
42	Genomic prediction of bull fertility in US Jersey dairy cattle. Journal of Dairy Science, 2019, 102, 3230-3240.	3.4	24
43	Predicting male fertility in dairy cattle using markers with large effect and functional annotation data. BMC Genomics, 2019, 20, 258.	2.8	44
44	Characterization and functional roles of paternal RNAs in 2–4 cell bovine embryos. Scientific Reports, 2019, 9, 20347.	3.3	23
45	Long-term effects of postpartum clinical disease on milk production, reproduction, and culling of dairy cows. Journal of Dairy Science, 2019, 102, 11701-11717.	3.4	82
46	Economic Selection Indices: The Best Tool for Dairy Cattle Selection. Edis, 2019, 2019, .	0.1	0
47	Linking genotype to phenotype: functional annotation as a tool to advance dairy cattle breeding. Burleigh Dodds Series in Agricultural Science, 2019, , 383-408.	0.2	0
48	Mechanisms for rescue of corpus luteum during pregnancy: gene expression in bovine corpus luteum following intrauterine pulses of prostaglandins E1 and F21±â€. Biology of Reproduction, 2018, 98, 465-479.	2.7	26
49	Whole-genome scan reveals significant non-additive effects for sire conception rate in Holstein cattle. BMC Genetics, 2018, 19, 14.	2.7	25
50	In Utero Heat Stress Alters the Offspring Epigenome. Scientific Reports, 2018, 8, 14609.	3.3	78
51	Gene Mapping and Gene-Set Analysis for Milk Fever Incidence in Holstein Dairy Cattle. Frontiers in Genetics, 2018, 9, 465.	2.3	15
52	Structural Equation Modeling and Whole-Genome Scans Uncover Chromosome Regions and Enriched Pathways for Carcass and Meat Quality in Beef. Frontiers in Genetics, 2018, 9, 532.	2.3	25
53	Genetic dissection of bull fertility in <scp>US</scp> Jersey dairy cattle. Animal Genetics, 2018, 49, 393-402.	1.7	38
54	Integrative analysis of methylomic and transcriptomic data in fetal sheep muscle tissues in response to maternal diet during pregnancy. BMC Genomics, 2018, 19, 123.	2.8	32

4

#	Article	IF	CITATIONS
55	RNA-Seq reveals novel genes and pathways involved in bovine mammary involution during the dry period and under environmental heat stress. Scientific Reports, 2018, 8, 11096.	3.3	48
56	Comparison of transcriptomic landscapes of different lamb muscles using RNA-Seq PLoS ONE, 2018, 13, e0200732.	2.5	8
57	Genetic parameter estimation for long endurance trials in the Uruguayan Criollo horse. Journal of Animal Breeding and Genetics, 2018, 135, 186-193.	2.0	1
58	Basic Concepts of Dairy Sire Selection. Edis, 2018, 2018, .	0.1	0
59	Effective Use of Genomics in Commercial Dairy Farms. Edis, 2018, 2018, .	0.1	0
60	Modelling female fertility traits in beef cattle using linear and nonâ€linear models. Journal of Animal Breeding and Genetics, 2017, 134, 202-212.	2.0	6
61	Predicting bull fertility using genomic data and biological information. Journal of Dairy Science, 2017, 100, 9656-9666.	3.4	55
62	Genetic parameters of objectionable fibers and of their associations with fleece traits in Corriedale sheep1. Journal of Animal Science, 2016, 94, 13-20.	0.5	7
63	Genome-wide association mapping and pathway analysis of leukosis incidence in a US Holstein cattle population. Animal Genetics, 2016, 47, 395-407.	1.7	25
64	Unravelling the genomic architecture of bull fertility in Holstein cattle. BMC Genetics, 2016, 17, 143.	2.7	87
65	Applications of Graphical Models in Quantitative Genetics and Genomics. , 2016, , 95-116.		4
66	MeSH-Informed Enrichment Analysis and MeSH-Guided Semantic Similarity Among Functional Terms and Gene Products in Chicken. G3: Genes, Genomes, Genetics, 2016, 6, 2447-2453.	1.8	10
67	An application of Me <scp>SH</scp> enrichment analysis in livestock. Animal Genetics, 2015, 46, 381-387.	1.7	26
68	Exploring causal networks underlying fat deposition and muscularity in pigs through the integration of phenotypic, genotypic and transcriptomic data. BMC Systems Biology, 2015, 9, 58.	3.0	13
69	Searching for causal networks involving latent variables in complex traits: Application to growth, carcass, and meat quality traits in pigs1. Journal of Animal Science, 2015, 93, 4617-4623.	0.5	27
70	The Causal Meaning of Genomic Predictors and How It Affects Construction and Comparison of Genome-Enabled Selection Models. Genetics, 2015, 200, 483-494.	2.9	24
71	Increasing serotonin concentrations alter calcium and energy metabolism in dairy cows. Journal of Endocrinology, 2015, 226, 43-55.	2.6	46
72	Transcriptomic Analysis of the Mouse Mammary Gland Reveals New Insights for the Role of Serotonin in Lactation. PLoS ONE, 2015, 10, e0140425.	2.5	14

#	Article	IF	CITATIONS
73	Insights into the Maize Pan-Genome and Pan-Transcriptome Â. Plant Cell, 2014, 26, 121-135.	6.6	498
74	Maternal nutrition induces gene expression changes in fetal muscle and adipose tissues in sheep. BMC Genomics, 2014, 15, 1034.	2.8	57
75	Invited review: Genetic contributions underlying the development of preimplantation bovine embryos. Journal of Dairy Science, 2014, 97, 1187-1201.	3.4	26
76	Incidence and relationships of black skin spots in the fleece area and pigmentation traits in commercial Corriedale flocks. Small Ruminant Research, 2014, 120, 64-70.	1.2	2
77	Short communication: A missense mutation in the PROP1 (prophet of Pit 1) gene affects male fertility and milk production traits in the US Holstein population. Journal of Dairy Science, 2013, 96, 1255-1257.	3.4	35
78	Genomic architecture of bovine κ-casein and β-lactoglobulin. Journal of Dairy Science, 2013, 96, 5333-5343.	3.4	30
79	Comparison of Poisson, probit and linear models for genetic analysis of number of inseminations to conception and success at first insemination in Iranian Holstein cows. Livestock Science, 2013, 153, 20-26.	1.6	9
80	Association of SNP of neuropeptide Y, leptin, and IGF-1 genes with residual feed intake in confinement and under grazing condition in Angus cattle1. Journal of Animal Science, 2013, 91, 4235-4244.	0.5	12
81	Knockdown of CDKN1C (p57kip2) and PHLDA2 Results in Developmental Changes in Bovine Pre-implantation Embryos. PLoS ONE, 2013, 8, e69490.	2.5	21
82	Maternal Diet during Pregnancy Induces Gene Expression and DNA Methylation Changes in Fetal Tissues in Sheep. Frontiers in Genetics, 2013, 4, 49.	2.3	95
83	Effect of Maternal Methionine Supplementation on the Transcriptome of Bovine Preimplantation Embryos. PLoS ONE, 2013, 8, e72302.	2.5	83
84	Association between milk protein gene variants and protein composition traits in dairy cattle. Journal of Dairy Science, 2012, 95, 440-449.	3.4	49
85	Short communication: Association of an OLR1 polymorphism with milk production traits in the Israeli Holstein population. Journal of Dairy Science, 2012, 95, 1565-1567.	3.4	11
86	Novel transcripts and alternatively spliced genes are associated with early development in bovine embryos. Animal, 2012, 6, 1199-1205.	3.3	5
87	RNA-Seq analysis uncovers transcriptomic variations between morphologically similar in vivo- and in vitro-derived bovine blastocysts. BMC Genomics, 2012, 13, 118.	2.8	97
88	Comparative genomics between fly, mouse, and cattle identifies genes associated with sire conception rate. Journal of Dairy Science, 2012, 95, 6122-6129.	3.4	21
89	Association of milk protein genes with fertilization rate and early embryonic development in Holstein dairy cattle. Journal of Dairy Research, 2012, 79, 47-52.	1.4	14
90	Using high resolution melting analysis to identify variation of NPY, LEP and IGF-1 genes in Angus cattle. Livestock Science, 2012, 146, 193-198.	1.6	3

#	Article	IF	CITATIONS
91	Genomeâ€wide association study identifies candidate markers for bull fertility in Holstein dairy cattle. Animal Genetics, 2012, 43, 65-71.	1.7	56
92	Gene expression analysis identifies new candidate genes associated with the development of black skin spots in Corriedale sheep. Journal of Applied Genetics, 2012, 53, 99-106.	1.9	24
93	Inferring Quantitative Trait Pathways Associated with Bull Fertility from a Genome-Wide Association Study. Frontiers in Genetics, 2012, 3, 307.	2.3	45
94	Differential expression of heat shock protein genes and their splice variants in bovine preimplantation embryos. Journal of Dairy Science, 2011, 94, 4174-4182.	3.4	31
95	Assessment of Poisson, Probit and linear models for genetic analysis of presence and number of black spots in Corriedale sheep. Journal of Animal Breeding and Genetics, 2011, 128, 105-113.	2.0	14
96	Intracolonial genetic variability in honeybee larval resistance to the chalkbrood and American foulbrood parasites. Insectes Sociaux, 2009, 56, 233-240.	1.2	23
97	Genomic selection and reproductive technologies to optimize herd replacements. , 0, , 379-388.		0