Michihito Sasaki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7950484/publications.pdf

Version: 2024-02-01

279701 243529 2,724 81 23 44 citations h-index g-index papers 92 92 92 3353 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Attenuated fusogenicity and pathogenicity of SARS-CoV-2 Omicron variant. Nature, 2022, 603, 700-705.	13.7	447
2	Discovery of S-217622, a Noncovalent Oral SARS-CoV-2 3CL Protease Inhibitor Clinical Candidate for Treating COVID-19. Journal of Medicinal Chemistry, 2022, 65, 6499-6512.	2.9	258
3	Glu333 in rabies virus glycoprotein is involved in virus attenuation through astrocyte infection and interferon responses. IScience, 2022, 25, 104122.	1.9	2
4	Multiple Routes of Antibody-Dependent Enhancement of SARS-CoV-2 Infection. Microbiology Spectrum, 2022, 10, e0155321.	1.2	30
5	A high-affinity aptamer with base-appended base-modified DNA bound to isolated authentic SARS-CoV-2 strains wild-type and B.1.617.2 (delta variant). Biochemical and Biophysical Research Communications, 2022, 614, 207-212.	1.0	6
6	Virological characteristics of the SARS-CoV-2 Omicron BA.2 spike. Cell, 2022, 185, 2103-2115.e19.	13.5	273
7	An unusually long Rift valley fever inter-epizootic period in Zambia: Evidence for enzootic virus circulation and risk for disease outbreak. PLoS Neglected Tropical Diseases, 2022, 16, e0010420.	1.3	7
8	Serological characterization of lineage II insect-specific flaviviruses compared with pathogenic mosquito-borne flaviviruses. Biochemical and Biophysical Research Communications, 2022, 616, 115-121.	1.0	1
9	TMPRSS11D and TMPRSS13 Activate the SARS-CoV-2 Spike Protein. Viruses, 2021, 13, 384.	1.5	50
10	Mastomys natalensis is a possible natural rodent reservoir for encephalomyocarditis virus. Journal of General Virology, 2021, 102, .	1.3	5
11	MRC5 cells engineered to express ACE2 serve as a model system for the discovery of antivirals targeting SARS-CoV-2. Scientific Reports, 2021, 11, 5376.	1.6	18
12	Diverse mosquito-specific flaviviruses in the Bolivian Amazon basin. Journal of General Virology, 2021, 102, .	1.3	5
13	An African tick flavivirus forming an independent clade exhibits unique exoribonuclease-resistant RNA structures in the genomic 3′-untranslated region. Scientific Reports, 2021, 11, 4883.	1.6	4
14	Domestic dog demographics and estimates of canine vaccination coverage in a rural area of Zambia for the elimination of rabies. PLoS Neglected Tropical Diseases, 2021, 15, e0009222.	1.3	6
15	Host Serine Proteases TMPRSS2 and TMPRSS11D Mediate Proteolytic Activation and Trypsin-Independent Infection in Group A Rotaviruses. Journal of Virology, 2021, 95, .	1.5	12
16	RIG-I triggers a signaling-abortive anti-SARS-CoV-2 defense in human lung cells. Nature Immunology, 2021, 22, 820-828.	7.0	169
17	Immunization Coverage and Antibody Retention against Rabies in Domestic Dogs in Lusaka District, Zambia. Pathogens, 2021, 10, 738.	1.2	2
18	Safety enhancement of a genetically modified live rabies vaccine strain by introducing an attenuating Leu residue at position 333 in the glycoprotein. Vaccine, 2021, 39, 3777-3784.	1.7	6

#	Article	IF	CITATIONS
19	Complete Genome Sequence of a Veterinary Pseudomonas aeruginosa Isolate, Pa12. Microbiology Resource Announcements, 2021, 10, e0039821.	0.3	0
20	SARS-CoV-2 Bearing a Mutation at the S1/S2 Cleavage Site Exhibits Attenuated Virulence and Confers Protective Immunity. MBio, 2021, 12, e0141521.	1.8	33
21	Dual Effect of Organogermanium Compound THGP on RIG-I-Mediated Viral Sensing and Viral Replication during Influenza a Virus Infection. Viruses, 2021, 13, 1674.	1.5	8
22	Attenuated infection by a Pteropine orthoreovirus isolated from an Egyptian fruit bat in Zambia. PLoS Neglected Tropical Diseases, 2021, 15, e0009768.	1.3	7
23	5-Hydroxymethyltubercidin exhibits potent antiviral activity against flaviviruses and coronaviruses, including SARS-CoV-2. IScience, 2021, 24, 103120.	1.9	6
24	Air-liquid interphase culture confers SARS-CoV-2 susceptibility to A549 alveolar epithelial cells. Biochemical and Biophysical Research Communications, 2021, 577, 146-151.	1.0	14
25	SARS-CoV-2 variants with mutations at the S1/S2 cleavage site are generated in vitro during propagation in TMPRSS2-deficient cells. PLoS Pathogens, 2021, 17, e1009233.	2.1	162
26	Novel Virulent Bacteriophage \hat{l} SG005, Which Infects Streptococcus gordonii, Forms a Distinct Clade among Streptococcus Viruses. Viruses, 2021, 13, 1964.	1.5	4
27	Abnormal Blood Coagulation and Kidney Damage in Aged Hamsters Infected with Severe Acute Respiratory Syndrome Coronavirus 2. Viruses, 2021, 13, 2137.	1.5	6
28	SARS-CoV-2 inhibits induction of the MHC class I pathway by targeting the STAT1-IRF1-NLRC5 axis. Nature Communications, 2021, 12, 6602.	5.8	104
29	Discoveries of Exoribonuclease-Resistant Structures of Insect-Specific Flaviviruses Isolated in Zambia. Viruses, 2020, 12, 1017.	1.5	11
30	The Lethal(2)-Essential-for-Life [L(2)EFL] Gene Family Modulates Dengue Virus Infection in Aedes aegypti. International Journal of Molecular Sciences, 2020, 21, 7520.	1.8	9
31	Characterization of a Novel Alphaherpesvirus Isolated from the Fruit Bat <i>Pteropus lylei</i> in Vietnam. Journal of Virology, 2020, 94, .	1.5	5
32	Comparative Analyses of the Antiviral Activities of IgG and IgA Antibodies to Influenza A Virus M2 Protein. Viruses, 2020, 12, 780.	1.5	5
33	Genetic and Phenotypic Characterization of a Rabies Virus Strain Isolated from a Dog in Tokyo, Japan in the 1940s. Viruses, 2020, 12, 914.	1.5	5
34	Co-Circulation of Multiple Serotypes of Bluetongue Virus in Zambia. Viruses, 2020, 12, 963.	1.5	3
35	Susceptibility of <i>Pseudomonas aeruginosa</i> veterinary isolates to <i>Pbunavirus</i> PB1â€ike phages. Microbiology and Immunology, 2020, 64, 778-782.	0.7	6
36	Evidence for exposure of asymptomatic domestic pigs to African swine fever virus during an interâ€epidemic period in Zambia. Transboundary and Emerging Diseases, 2020, 67, 2741-2752.	1.3	14

3

#	Article	IF	CITATIONS
37	West Nile Virus in Farmed Crocodiles, Zambia, 2019. Emerging Infectious Diseases, 2020, 26, 811-814.	2.0	15
38	Detection of novel orthoreovirus genomes in shrew (<i>Crocidura hirta</i>) and fruit bat (<i>Rousettus aegyptiacus</i>). Journal of Veterinary Medical Science, 2020, 82, 162-167.	0.3	4
39	Host ESCRT factors are recruited during chikungunya virus infection and are required for the intracellular viral replication cycle. Journal of Biological Chemistry, 2020, 295, 7941-7957.	1.6	12
40	Potential Role of Nonneutralizing IgA Antibodies in Cross-Protective Immunity against Influenza A Viruses of Multiple Hemagglutinin Subtypes. Journal of Virology, 2020, 94, .	1.5	25
41	Characterization of mammalian orthoreoviruses isolated from faeces of pigs in Zambia. Journal of General Virology, 2020, 101, 1027-1036.	1.3	9
42	Whole-Genome Sequence of Fluoroquinolone-Resistant Escherichia coli HUE1, Isolated in Hokkaido, Japan. Microbiology Resource Announcements, 2020, 9, .	0.3	2
43	Upregulated expression of the antioxidant sestrin 2 identified by transcriptomic analysis of Japanese encephalitis virus-infected SH-SY5Y neuroblastoma cells. Virus Genes, 2019, 55, 630-642.	0.7	14
44	Genetic diversity of rabies virus in different host species and geographic regions of Zambia and Zimbabwe. Virus Genes, 2019, 55, 713-719.	0.7	11
45	Serological evidence of Zika virus infection in non-human primates in Zambia. Archives of Virology, 2019, 164, 2165-2170.	0.9	16
46	Discovery and genetic characterization of diverse smacoviruses in Zambian non-human primates. Scientific Reports, 2019, 9, 5045.	1.6	8
47	Human Borreliosis Caused by a New World Relapsing Fever Borrelia–like Organism in the Old World. Clinical Infectious Diseases, 2019, 69, 107-112.	2.9	36
48	The Role of Heparan Sulfate Proteoglycans as an Attachment Factor for Rabies Virus Entry and Infection. Journal of Infectious Diseases, 2018, 217, 1740-1749.	1.9	50
49	Discovery of Mwinilunga alphavirus: A novel alphavirus in Culex mosquitoes in Zambia. Virus Research, 2018, 250, 31-36.	1.1	25
50	Ribavirin-related compounds exert in vitro inhibitory effects toward rabies virus. Antiviral Research, 2018, 154, 1-9.	1.9	21
51	Development of a rapid and quantitative method for the analysis of viral entry and release using a NanoLuc luciferase complementation assay. Virus Research, 2018, 243, 69-74.	1.1	34
52	Identification of group A rotaviruses from Zambian fruit bats provides evidence for long-distance dispersal events in Africa. Infection, Genetics and Evolution, 2018, 63, 104-109.	1.0	13
53	Single Amino Acid Mutation in Dengue Virus NS4B Protein Has Opposing Effects on Viral Proliferation in Mammalian and Mosquito Cells. Japanese Journal of Infectious Diseases, 2018, 71, 448-454.	0.5	4
54	Detection of novel gammaherpesviruses from fruit bats in Indonesia. Journal of Medical Microbiology, 2018, 67, 415-422.	0.7	10

#	Article	IF	CITATIONS
55	Isolation of a simian immunodeficiency virus from a malbrouck (Chlorocebus cynosuros). Archives of Virology, 2017, 162, 543-548.	0.9	8
56	An optimistic protein assembly from sequence reads salvaged an uncharacterized segment of mouse picobirnavirus. Scientific Reports, 2017, 7, 40447.	1.6	2
57	Discovery of a novel antiviral agent targeting the nonstructural protein 4 (nsP4) of chikungunya virus. Virology, 2017, 505, 102-112.	1.1	32
58	Valosin-containing protein (VCP/p97) plays a role in the replication of West Nile virus. Virus Research, 2017, 228, 114-123.	1.1	32
59	Discovery of African bat polyomaviruses and infrequent recombination in the large T antigen in the Polyomaviridae. Journal of General Virology, 2017, 98, 726-738.	1.3	14
60	Identification of the same polyomavirus species in different African horseshoe bat species is indicative of short-range host-switching events. Journal of General Virology, 2017, 98, 2771-2785.	1.3	11
61	Divergent bufavirus harboured in megabats represents a new lineage of parvoviruses. Scientific Reports, 2016, 6, 24257.	1.6	22
62	Generation of recombinant rabies viruses encoding NanoLuc luciferase for antiviral activity assays. Virus Research, 2016, 215, 121-128.	1.1	21
63	Multi-reassortant G3P[3] group A rotavirus in a horseshoe bat in Zambia. Journal of General Virology, 2016, 97, 2488-2493.	1.3	16
64	Distinct Lineages of Bufavirus in Wild Shrews and Nonhuman Primates. Emerging Infectious Diseases, 2015, 21, 1230-1233.	2.0	39
65	Metagenomic analysis of the shrew enteric virome reveals novel viruses related to human stool-associated viruses. Journal of General Virology, 2015, 96, 440-452.	1.3	34
66	Detection of coronavirus genomes in Moluccan naked-backed fruit bats in Indonesia. Archives of Virology, 2015, 160, 1113-1118.	0.9	21
67	Detection of novel polyomaviruses in fruit bats in Indonesia. Archives of Virology, 2015, 160, 1075-1082.	0.9	18
68	Orthopoxvirus infection among wildlife in Zambia. Journal of General Virology, 2015, 96, 390-394.	1.3	39
69	Isolation and Characterization of a Novel Alphaherpesvirus in Fruit Bats. Journal of Virology, 2014, 88, 9819-9829.	1.5	29
70	Molecular epidemiology of paramyxoviruses in Zambian wild rodents and shrews. Journal of General Virology, 2014, 95, 325-330.	1.3	29
71	A nairovirus isolated from African bats causes haemorrhagic gastroenteritis and severe hepatic disease in mice. Nature Communications, 2014, 5, 5651.	5.8	41
72	Autophagy inhibits viral genome replication and gene expression stages in West Nile virus infection. Virus Research, 2014, 191, 83-91.	1.1	40

#	Article	IF	CITATIONS
73	Molecular Epidemiology of Paramyxoviruses in Frugivorous <i>Eidolon helvum</i> Bats in Zambia. Journal of Veterinary Medical Science, 2014, 76, 611-614.	0.3	20
74	Role of the C-Terminal Region of Vervet Monkey Polyomavirus 1 VP1 in Virion Formation. Journal of Veterinary Medical Science, 2014, 76, 637-644.	0.3	2
75	Characterization of Japanese encephalitis virus infection in an immortalized mesencephalic cell line, CSM14.1. Microbiology and Immunology, 2013, 57, 723-731.	0.7	4
76	Human Parainfluenza Virus Type 3 in Wild Nonhuman Primates, Zambia. Emerging Infectious Diseases, 2013, 19, .	2.0	12
77	Molecular detection of a novel paramyxovirus in fruit bats from Indonesia. Virology Journal, 2012, 9, 240.	1.4	35
78	Paradoxical effects of chondroitin sulfate-E on Japanese encephalitis viral infection. Biochemical and Biophysical Research Communications, 2011, 409, 717-722.	1.0	14
79	Equine major histocompatibility complex class I molecules act as entry receptors that bind to equine herpesvirus-1 glycoprotein D. Genes To Cells, 2011, 16, 343-357.	0.5	34
80	Single Amino Acid Residue in the A2 Domain of Major Histocompatibility Complex Class I Is Involved in the Efficiency of Equine Herpesvirus-1 Entry. Journal of Biological Chemistry, 2011, 286, 39370-39378.	1.6	10
81	Infectious entry of equine herpesvirus-1 into host cells through different endocytic pathways. Virology, 2009, 393, 198-209.	1.1	30