Mirjam B Zeisel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7949922/publications.pdf Version: 2024-02-01

MIDIAM R 7FISFI

#	Article	IF	CITATIONS
1	Targeting clinical epigenetic reprogramming for chemoprevention of metabolic and viral hepatocellular carcinoma. Gut, 2021, 70, 157-169.	12.1	57
2	Host Epigenetic Alterations and Hepatitis B Virus-Associated Hepatocellular Carcinoma. Journal of Clinical Medicine, 2021, 10, 1715.	2.4	12
3	The IncRNAs in HBV-Related HCCs: Targeting Chromatin Dynamics and Beyond. Cancers, 2021, 13, 3115.	3.7	6
4	A human liver cell-based system modeling a clinical prognostic liver signature for therapeutic discovery. Nature Communications, 2021, 12, 5525.	12.8	21
5	Functional microRNA screen uncovers O-linked N-acetylglucosamine transferase as a host factor modulating hepatitis C virus morphogenesis and infectivity. Gut, 2020, 69, 380-392.	12.1	20
6	Combined small molecule and loss-of-function screen uncovers estrogen receptor alpha and CAD as host factors for HDV infection and antiviral targets. Gut, 2020, 69, 158-167.	12.1	31
7	Hepatitis C Virus Entry: An Intriguingly Complex and Highly Regulated Process. International Journal of Molecular Sciences, 2020, 21, 2091.	4.1	24
8	Hepatitis B protein HBx binds the DLEU2 IncRNA to sustain cccDNA and host cancer-related gene transcription. Gut, 2020, 69, 2016-2024.	12.1	92
9	Combined Analysis of Metabolomes, Proteomes, and Transcriptomes of Hepatitis C Virus–Infected Cells and Liver to Identify Pathways Associated With Disease Development. Gastroenterology, 2019, 157, 537-551.e9.	1.3	71
10	Interleukinâ€32 Contributes to Human Nonalcoholic Fatty Liver Disease and Insulin Resistance. Hepatology Communications, 2019, 3, 1205-1220.	4.3	38
11	Interferonâ€Induced Transmembrane Proteins Mediate Viral Evasion in Acute and Chronic Hepatitis C Virus Infection. Hepatology, 2019, 70, 1506-1520.	7.3	21
12	HCV-Induced Epigenetic Changes Associated With Liver Cancer Risk Persist After Sustained Virologic Response. Gastroenterology, 2019, 156, 2313-2329.e7.	1.3	184
13	In vivo combination of human anti-envelope glycoprotein E2 and -Claudin-1 monoclonal antibodies for prevention of hepatitis C virus infection. Antiviral Research, 2019, 162, 136-141.	4.1	4
14	Tight junction proteins in gastrointestinal and liver disease. Gut, 2019, 68, 547-561.	12.1	201
15	Hepatitis B Virus Evasion From Cyclic Guanosine Monophosphate–Adenosine Monophosphate Synthase Sensing in Human Hepatocytes. Hepatology, 2018, 68, 1695-1709.	7.3	66
16	Host-targeting therapies for hepatitis C virus infection: current developments and future applications. Therapeutic Advances in Gastroenterology, 2018, 11, 175628481875948.	3.2	32
17	miR-135a-5p-mediated downregulation of protein tyrosine phosphatase receptor delta is a candidate driver of HCV-associated hepatocarcinogenesis. Gut, 2018, 67, 953-962.	12.1	59
18	miR-122-regulated metabolic circuits: micro-management of lipid metabolism in the human liver. Non-coding RNA Investigation, 2018, 2, 45-45.	0.6	1

#	Article	IF	CITATIONS
19	Non-Coding RNAs and Hepatitis C Virus-Induced Hepatocellular Carcinoma. Viruses, 2018, 10, 591.	3.3	30
20	A microRNA screen uncovers O-Linked N-Acetylglucosamine transferase as a host factor involved in hepatitis C virus morphogenesis. Journal of Hepatology, 2018, 68, S62-S63.	3.7	0
21	Estrogen receptor R1 and CAD are host factors for HDV replication and antiviral targets. Journal of Hepatology, 2018, 68, S787-S788.	3.7	0
22	Hepatitis C Virus (HCV)–Apolipoprotein Interactions and Immune Evasion and Their Impact on HCV Vaccine Design. Frontiers in Immunology, 2018, 9, 1436.	4.8	38
23	Clinical development of hepatitis C virus host-targeting agents. Lancet, The, 2017, 389, 674-675.	13.7	14
24	Toward novel immunocompetent animal models for hepatitis B virus infection. Hepatology, 2017, 66, 691-693.	7.3	1
25	Humanisation of a claudin-1-specific monoclonal antibody for clinical prevention and cure of HCV infection without escape. Gut, 2017, 67, gutjnl-2016-312577.	12.1	23
26	Plasmodium P36 determines host cell receptor usage during sporozoite invasion. ELife, 2017, 6, .	6.0	91
27	Circulating microRNAs for early detection of hepatitis B-related hepatocellular carcinoma. Hepatobiliary Surgery and Nutrition, 2016, 5, 198-200.	1.5	1
28	Cell Culture Models for the Investigation of Hepatitis B and D Virus Infection. Viruses, 2016, 8, 261.	3.3	44
29	Translation and protein expression of IncRNAs: Impact for liver disease and hepatocellular carcinoma. Hepatology, 2016, 64, 671-674.	7.3	12
30	Hepatitis C Virus-Induced Upregulation of MicroRNA miR-146a-5p in Hepatocytes Promotes Viral Infection and Deregulates Metabolic Pathways Associated with Liver Disease Pathogenesis. Journal of Virology, 2016, 90, 6387-6400.	3.4	97
31	Broad neutralization of hepatitis C virusâ€resistant variants by Civacir hepatitis C immunoglobulin. Hepatology, 2016, 64, 1495-1506.	7.3	8
32	Chronic hepatitis C virus infection and pathogenesis of hepatocellular carcinoma. Current Opinion in Virology, 2016, 20, 99-105.	5.4	62
33	Solute Carrier NTCP Regulates Innate Antiviral Immune Responses Targeting Hepatitis C Virus Infection of Hepatocytes. Cell Reports, 2016, 17, 1357-1368.	6.4	34
34	Hepatitis B virus: is a cure possible?. Expert Review of Clinical Pharmacology, 2016, 9, 1129-1130.	3.1	1
35	Addressing the next challenges: A summary of the 22nd international symposium on hepatitis C virus and related viruses. Journal of Hepatology, 2016, 64, 968-973.	3.7	7
36	A targeted functional RNA interference screen uncovers glypican 5 as an entry factor for hepatitis B and D viruses. Hepatology, 2016, 63, 35-48.	7.3	131

#	Article	IF	CITATIONS
37	Apolipoprotein E Mediates Evasion From Hepatitis C Virus Neutralizing Antibodies. Gastroenterology, 2016, 150, 206-217.e4.	1.3	64
38	Acute hepatitis C virus infection induces antiâ€host cell receptor antibodies with virusâ€neutralizing properties. Hepatology, 2015, 62, 726-736.	7.3	4
39	Host-Targeting Agents to Prevent and Cure Hepatitis C Virus Infection. Viruses, 2015, 7, 5659-5685.	3.3	54
40	Towards an HBV cure: state-of-the-art and unresolved questions—report of the ANRS workshop on HBV cure. Gut, 2015, 64, 1314-1326.	12.1	234
41	Synergy of entry inhibitors with direct-acting antivirals uncovers novel combinations for prevention and treatment of hepatitis C. Gut, 2015, 64, 483-494.	12.1	83
42	Clearance of persistent hepatitis C virus infection in humanized mice using a claudin-1-targeting monoclonal antibody. Nature Biotechnology, 2015, 33, 549-554.	17.5	129
43	Claudins and pathogenesis of viral infection. Seminars in Cell and Developmental Biology, 2015, 42, 39-46.	5.0	11
44	When one receptor closes, another opens: Claudins and the hepatitis C virus E1 glycoprotein. Hepatology, 2015, 62, 991-993.	7.3	2
45	Host-targeting agents for treatment of hepatitis B virus infection. Current Opinion in Virology, 2015, 14, 41-46.	5.4	33
46	Functional and Biochemical Characterization of Hepatitis C Virus (HCV) Particles Produced in a Humanized Liver Mouse Model. Journal of Biological Chemistry, 2015, 290, 23173-23187.	3.4	26
47	miR-122 – A key factor and therapeutic target in liver disease. Journal of Hepatology, 2015, 62, 448-457.	3.7	487
48	Molecular Mechanisms of Hepatitis C Virus Entry – Impact of Host Cell Factors for Initiation of Viral Infection. , 2015, , 189-202.		0
49	CD81-Receptor Associations — Impact for Hepatitis C Virus Entry and Antiviral Therapies. Viruses, 2014, 6, 875-892.	3.3	33
50	Hepatitis C Virus Cell-Cell Transmission and Resistance to Direct-Acting Antiviral Agents. PLoS Pathogens, 2014, 10, e1004128.	4.7	97
51	Critical interaction between E1 and E2 glycoproteins determines binding and fusion properties of hepatitis C virus during cell entry. Hepatology, 2014, 59, 776-788.	7.3	83
52	Genetically humanized mice recapitulate the entire hepatitis C virus life cycle. Journal of Hepatology, 2014, 60, 671-673.	3.7	2
53	Role of Hypervariable Region 1 for the Interplay of Hepatitis C Virus with Entry Factors and Lipoproteins. Journal of Virology, 2014, 88, 12644-12655.	3.4	42
54	IFN-λ receptor 1 expression is induced in chronic hepatitis C and correlates with the <i>IFN-λ3</i> genotype and with nonresponsiveness to IFN-α therapies. Journal of Experimental Medicine, 2014, 211, 857-868.	8.5	58

#	Article	IF	CITATIONS
55	miR-122 acts as a tumor suppressor in hepatocarcinogenesis in vivo. Journal of Hepatology, 2013, 58, 821-823.	3.7	45
56	Hepatitis C Virus Envelope Glycoprotein Signatures Are Associated With Treatment Failure and Modulation of Viral Entry and Neutralization. Journal of Infectious Diseases, 2013, 207, 1306-1315.	4.0	9
57	Host-targeting agents for prevention and treatment of chronic hepatitis C – Perspectives and challenges. Journal of Hepatology, 2013, 58, 375-384.	3.7	88
58	Hepatitis C Virus Entry. Current Topics in Microbiology and Immunology, 2013, 369, 87-112.	1.1	130
59	HRas Signal Transduction Promotes Hepatitis C Virus Cell Entry by Triggering Assembly of the Host Tetraspanin Receptor Complex. Cell Host and Microbe, 2013, 13, 302-313.	11.0	141
60	Synthetic anti-lipopolysaccharide peptides and hepatitis C virus infection. Expert Opinion on Investigational Drugs, 2013, 22, 853-862.	4.1	1
61	Functional Analysis of Claudin-6 and Claudin-9 as Entry Factors for Hepatitis C Virus Infection of Human Hepatocytes by Using Monoclonal Antibodies. Journal of Virology, 2013, 87, 10405-10410.	3.4	28
62	The postbinding activity of scavenger receptor class B type I mediates initiation of hepatitis C virus infection and viral dissemination. Hepatology, 2013, 57, 492-504.	7.3	66
63	Epidermal growth factor receptor signaling impairs the antiviral activity of interferon-alpha. Hepatology, 2013, 58, 1225-1235.	7.3	71
64	A Novel Monoclonal Anti-CD81 Antibody Produced by Genetic Immunization Efficiently Inhibits Hepatitis C Virus Cell-Cell Transmission. PLoS ONE, 2013, 8, e64221.	2.5	53
65	Genotype 1 Hepatitis C Virus Envelope Features That Determine Antiviral Response Assessed through Optimal Covariance Networks. PLoS ONE, 2013, 8, e67254.	2.5	8
66	Hepatitis C virus infection and related liver disease: the quest for the best animal model. Frontiers in Microbiology, 2013, 4, 213.	3.5	32
67	Hepatitis C virus internalization. Virologie, 2013, 17, 401-413.	0.1	3
68	Neutralizing Antibodies and Pathogenesis of Hepatitis C Virus Infection. Viruses, 2012, 4, 2016-2030.	3.3	23
69	Reconstitution of the Entire Hepatitis C Virus Life Cycle in Nonhepatic Cells. Journal of Virology, 2012, 86, 11919-11925.	3.4	83
70	Characterization of Hepatitis C Virus Particle Subpopulations Reveals Multiple Usage of the Scavenger Receptor BI for Entry Steps. Journal of Biological Chemistry, 2012, 287, 31242-31257.	3.4	104
71	A New Class of Synthetic Peptide Inhibitors Blocks Attachment and Entry of Human Pathogenic Viruses. Journal of Infectious Diseases, 2012, 205, 1654-1664.	4.0	75
72	Mutations That Alter Use of Hepatitis C Virus Cell Entry Factors Mediate Escape From Neutralizing Antibodies. Gastroenterology, 2012, 143, 223-233.e9.	1.3	66

#	Article	IF	CITATIONS
73	Small molecule scavenger receptor BI antagonists are potent HCV entry inhibitors. Journal of Hepatology, 2011, 54, 48-55.	3.7	129
74	Hepatitis C virus entry into hepatocytes: Molecular mechanisms and targets for antiviral therapies. Journal of Hepatology, 2011, 54, 566-576.	3.7	161
75	EGFR and EphA2 are host factors for hepatitis C virus entry and possible targets for antiviral therapy. Nature Medicine, 2011, 17, 589-595.	30.7	631
76	Opening the door for hepatitis C virus infection in genetically humanized mice. Hepatology, 2011, 54, 1873-1875.	7.3	3
77	Tight junctions and viral entry. Future Virology, 2010, 5, 263-271.	1.8	3
78	Apolipoprotein E interacts with hepatitis C virus nonstructural protein 5A and determines assembly of infectious particles. Hepatology, 2010, 51, 43-53.	7.3	191
79	Inhibition of hepatitis C virus infection by anti-claudin-1 antibodies is mediated by neutralization of E2-CD81-Claudin-1 associations. Hepatology, 2010, 51, 1144-1157.	7.3	144
80	Mutations within a Conserved Region of the Hepatitis C Virus E2 Glycoprotein That Influence Virus-Receptor Interactions and Sensitivity to Neutralizing Antibodies. Journal of Virology, 2010, 84, 5494-5507.	3.4	65
81	Hepatitis C Virus Hypervariable Region 1 Modulates Receptor Interactions, Conceals the CD81 Binding Site, and Protects Conserved Neutralizing Epitopes. Journal of Virology, 2010, 84, 5751-5763.	3.4	201
82	Adaptation of Hepatitis C Virus to Mouse CD81 Permits Infection of Mouse Cells in the Absence of Human Entry Factors. PLoS Pathogens, 2010, 6, e1000978.	4.7	109
83	Virus–host interactions in hepatitis C virus infection: implications for molecular pathogenesis and antiviral strategies. Trends in Molecular Medicine, 2010, 16, 277-286.	6.7	62
84	Getting closer to the patient: Upgrade of hepatitis C virus infection in primary human hepatocytes. Journal of Hepatology, 2010, 53, 388-389.	3.7	2
85	Hepatitis C virus entry: molecular mechanisms and targets for antiviral therapy. Frontiers in Bioscience - Landmark, 2009, Volume, 3274.	3.0	38
86	Adaptive Immunity to Hepatitis C Virus. Viruses, 2009, 1, 276-297.	3.3	3
87	Development of hepatitis C virus vaccines: challenges and progress. Expert Review of Vaccines, 2009, 8, 333-345.	4.4	82
88	Toll-Like Receptor 2 Senses Hepatitis C Virus Core Protein but Not Infectious Viral Particles. Journal of Innate Immunity, 2009, 1, 446-454.	3.8	27
89	HCV entry and neutralizing antibodies: lessons from viral variants. Future Microbiology, 2009, 4, 511-517.	2.0	7
90	Virus-host interactions during hepatitis C virus entry — implications for pathogenesis and novel treatment approaches. Virologica Sinica, 2008, 23, 124-131.	3.0	1

#	Article	IF	CITATIONS
91	Host neutralizing responses and pathogenesis of hepatitis C virus infection. Hepatology, 2008, 48, 299-307.	7.3	44
92	Neutralizing Host Responses in Hepatitis C Virus Infection Target Viral Entry at Postbinding Steps and Membrane Fusion. Gastroenterology, 2008, 135, 1719-1728.e1.	1.3	65
93	Scavenger Receptor Class B Is Required for Hepatitis C Virus Uptake and Cross-Presentation by Human Dendritic Cells. Journal of Virology, 2008, 82, 3466-3479.	3.4	79
94	Hepatitis C Virus Infection Sensitizes Human Hepatocytes to TRAIL-Induced Apoptosis in a Caspase 9-Dependent Manner. Journal of Immunology, 2008, 181, 4926-4935.	0.8	66
95	Rapid induction of virus-neutralizing antibodies and viral clearance in a single-source outbreak of hepatitis C. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 6025-6030.	7.1	478
96	Scavenger receptor class B type I is a key host factor for hepatitis C virus infection required for an entry step closely linked to CD81. Hepatology, 2007, 46, 1722-1731.	7.3	222
97	Neutralizing antibodies in hepatitis C virus infection. World Journal of Gastroenterology, 2007, 13, 4824.	3.3	40
98	449 Hepatitis C virus structural proteins and activation of Toll-like receptors 2 and 4. Journal of Hepatology, 2006, 44, S167-S168.	3.7	0
99	Production of infectious hepatitis C virus in tissue culture: A breakthrough for basic and applied research. Journal of Hepatology, 2006, 44, 436-439.	3.7	21
100	Host cell responses induced by hepatitis C virus binding. Hepatology, 2006, 43, 1326-1336.	7.3	20
101	Cross Talk between MyD88 and Focal Adhesion Kinase Pathways. Journal of Immunology, 2005, 174, 7393-7397.	0.8	64
102	MMP-3 expression and release by rheumatoid arthritis fibroblast-like synoviocytes induced with a bacterial ligand of integrin alpha5beta1. Arthritis Research, 2005, 7, R118.	2.0	26
103	Impaired release of IL-18 from fibroblast-like synoviocytes activated with protein I/II, a pathogen-associated molecular pattern from oral streptococci, results from defective translation of IL-18 mRNA in pro-IL-18. Cellular Microbiology, 2004, 6, 593-598.	2.1	7
104	Geraniol, a component of plant essential oils, modulates DNA synthesis and potentiates 5-fluorouracil efficacy on human colon tumor xenografts. Cancer Letters, 2004, 215, 53-59.	7.2	135
105	ERK 1/2- and JNKs-dependent Synthesis of Interleukins 6 and 8 by Fibroblast-like Synoviocytes Stimulated with Protein I/II, a Modulin from Oral Streptococci, Requires Focal Adhesion Kinase. Journal of Biological Chemistry, 2003, 278, 27721-27728.	3.4	39
106	NF-kappaB and the MAP kinases/AP-1 pathways are both involved in interleukin-6 and interleukin-8 expression in fibroblast-like synoviocytes stimulated by protein I/II, a modulin from oral streptococci. Cellular Microbiology, 2001, 3, 703-712.	2.1	71