
## Miguel Garcia-Diaz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7949771/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | A minimal motif for sequence recognition by mitochondrial transcription factor A (TFAM). Nucleic<br>Acids Research, 2022, 50, 322-332.                                                                                                             | 6.5 | 10        |
| 2  | A549 cells contain enlarged mitochondria with independently functional clustered mtDNA nucleoids.<br>PLoS ONE, 2021, 16, e0249047.                                                                                                                 | 1.1 | 5         |
| 3  | Enzymatic β-Oxidation of the Cholesterol Side Chain in <i>Mycobacterium tuberculosis</i> Bifurcates<br>Stereospecifically at Hydration of 3-Oxo-cholest-4,22-dien-24-oyl-CoA. ACS Infectious Diseases, 2021, 7,<br>1739-1751.                      | 1.8 | 7         |
| 4  | Post-translational Succinylation of <i>Mycobacterium tuberculosis</i> Enoyl-CoA Hydratase EchA19<br>Slows Catalytic Hydration of Cholesterol Catabolite 3-Oxo-chol-4,22-diene-24-oyl-CoA. ACS Infectious<br>Diseases, 2020, 6, 2214-2224.          | 1.8 | 15        |
| 5  | Mitochondrial genetic variation is enriched in G-quadruplex regions that stall DNA synthesis in vitro.<br>Human Molecular Genetics, 2020, 29, 1292-1309.                                                                                           | 1.4 | 36        |
| 6  | Mechanisms of mammalian mitochondrial transcription. Protein Science, 2019, 28, 1594-1605.                                                                                                                                                         | 3.1 | 19        |
| 7  | The juxtamembrane linker in neutral sphingomyelinase-2 functions as an intramolecular allosteric switch that activates the enzyme. Journal of Biological Chemistry, 2019, 294, 7488-7502.                                                          | 1.6 | 15        |
| 8  | hnRNPA2 mediated acetylation reduces telomere length in response to mitochondrial dysfunction.<br>PLoS ONE, 2018, 13, e0206897.                                                                                                                    | 1.1 | 12        |
| 9  | Characterization of Biomolecular Helices and Their Complementarity Using Geometric Analysis.<br>Journal of Chemical Information and Modeling, 2017, 57, 864-874.                                                                                   | 2.5 | 9         |
| 10 | Structure of human nSMase2 reveals an interdomain allosteric activation mechanism for ceramide<br>generation. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114,<br>E5549-E5558.                          | 3.3 | 82        |
| 11 | Biochemical Characterization of the Human Mitochondrial Replicative Twinkle Helicase. Journal of<br>Biological Chemistry, 2016, 291, 14324-14339.                                                                                                  | 1.6 | 17        |
| 12 | A human transcription factor in search mode. Nucleic Acids Research, 2016, 44, 63-74.                                                                                                                                                              | 6.5 | 52        |
| 13 | Structural and Biochemical Basis for Intracellular Kinase Inhibition by Src-specific Peptidic Macrocycles. Cell Chemical Biology, 2016, 23, 1103-1112.                                                                                             | 2.5 | 12        |
| 14 | A fidelity mechanism in <scp>DNA</scp> polymerase lambda promotes errorâ€free bypass of<br>8â€oxoâ€ <scp>dG</scp> . EMBO Journal, 2016, 35, 2045-2059.                                                                                             | 3.5 | 30        |
| 15 | Base Flipping by MTERF1 Can Accommodate Multiple Conformations and Occurs in a Stepwise Fashion.<br>Journal of Molecular Biology, 2016, 428, 2542-2556.                                                                                            | 2.0 | 3         |
| 16 | Nucleotide binding interactions modulate dNTP selectivity and facilitate 8-oxo-dGTP incorporation by DNA polymerase lambda. Nucleic Acids Research, 2015, 43, 8089-8099.                                                                           | 6.5 | 16        |
| 17 | Unraveling Cholesterol Catabolism in <i>Mycobacterium tuberculosis</i> : ChsE4-ChsE5<br>α <sub>2</sub> β <sub>2</sub> Acyl-CoA Dehydrogenase Initiates β-Oxidation of 3-Oxo-cholest-4-en-26-oyl<br>CoA. ACS Infectious Diseases, 2015, 1, 110-125. | 1.8 | 46        |
| 18 | Non-stop mRNA decay: a special attribute of trans-translation mediated ribosome rescue. Frontiers in<br>Microbiology, 2014, 5, 93.                                                                                                                 | 1.5 | 17        |

MIGUEL GARCIA-DIAZ

| #  | Article                                                                                                                                                                                                                                        | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | A Distinct MaoC-like Enoyl-CoA Hydratase Architecture Mediates Cholesterol Catabolism in<br><i>Mycobacterium tuberculosis</i> . ACS Chemical Biology, 2014, 9, 2632-2645.                                                                      | 1.6  | 47        |
| 20 | Timeâ€Dependent Diaryl Ether Inhibitors of InhA: Structure–Activity Relationship Studies of Enzyme<br>Inhibition, Antibacterial Activity, and in vivo Efficacy. ChemMedChem, 2014, 9, 776-791.                                                 | 1.6  | 48        |
| 21 | Organization of the human mitochondrial transcription initiation complex. Nucleic Acids Research, 2014, 42, 4100-4112.                                                                                                                         | 6.5  | 39        |
| 22 | The active site of TthPolX is adapted to prevent 8-oxo-dGTP misincorporation. Nucleic Acids Research, 2014, 42, 534-543.                                                                                                                       | 6.5  | 8         |
| 23 | Structures of the Leishmania infantum polymerase beta. DNA Repair, 2014, 18, 1-9.                                                                                                                                                              | 1.3  | 5         |
| 24 | A Structural and Energetic Model for the Slow-Onset Inhibition of the <i>Mycobacterium tuberculosis</i> Enoyl-ACP Reductase InhA. ACS Chemical Biology, 2014, 9, 986-993.                                                                      | 1.6  | 63        |
| 25 | Structural basis for S -adenosylmethionine binding and methyltransferase activity by mitochondrial transcription factor B1. Nucleic Acids Research, 2013, 41, 7947-7959.                                                                       | 6.5  | 21        |
| 26 | A Remote Palm Domain Residue of RB69 DNA Polymerase Is Critical for Enzyme Activity and Influences the Conformation of the Active Site. PLoS ONE, 2013, 8, e76700.                                                                             | 1.1  | 7         |
| 27 | Hitting the brakes: Termination of mitochondrial transcription. Biochimica Et Biophysica Acta - Gene<br>Regulatory Mechanisms, 2012, 1819, 939-947.                                                                                            | 0.9  | 21        |
| 28 | Structure of the Essential MTERF4:NSUN4 Protein Complex Reveals How an MTERF Protein Collaborates to Facilitate rRNA Modification. Structure, 2012, 20, 1940-1947.                                                                             | 1.6  | 65        |
| 29 | D-MTERF5 is a novel factor modulating transcription in Drosophila mitochondria. Mitochondrion, 2012, 12, 492-499.                                                                                                                              | 1.6  | 14        |
| 30 | Mitochondrial transcription. Transcription, 2011, 2, 32-36.                                                                                                                                                                                    | 1.7  | 12        |
| 31 | Plastid gene expression and plant development require a plastidic protein of the mitochondrial transcription termination factor family. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 6674-6679. | 3.3  | 134       |
| 32 | Basis for the Isoform-specific Interaction of Myosin Phosphatase Subunits Protein Phosphatase 1c β and<br>Myosin Phosphatase Targeting Subunit 1. Journal of Biological Chemistry, 2010, 285, 6419-6424.                                       | 1.6  | 35        |
| 33 | Loop 1 modulates the fidelity of DNA polymerase Â. Nucleic Acids Research, 2010, 38, 5419-5431.                                                                                                                                                | 6.5  | 34        |
| 34 | Interaction between DNA Polymerase λ and Anticancer Nucleoside Analogs. Journal of Biological<br>Chemistry, 2010, 285, 16874-16879.                                                                                                            | 1.6  | 17        |
| 35 | Helix Unwinding and Base Flipping Enable Human MTERF1 to Terminate Mitochondrial Transcription.<br>Cell, 2010, 141, 982-993.                                                                                                                   | 13.5 | 95        |
| 36 | Template strand scrunching during DNA gap repair synthesis by human polymerase λ. Nature Structural<br>and Molecular Biology, 2009, 16, 967-972.                                                                                               | 3.6  | 49        |

MIGUEL GARCIA-DIAZ

| #  | Article                                                                                                                                                                                                                                | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Characterization of a Natural Mutator Variant of Human DNA Polymerase λ which Promotes<br>Chromosomal Instability by Compromising NHEJ. PLoS ONE, 2009, 4, e7290.                                                                      | 1.1  | 16        |
| 38 | Substrateâ€induced DNA strand misalignment during catalytic cycling by DNA polymerase λ. EMBO<br>Reports, 2008, 9, 459-464.                                                                                                            | 2.0  | 36        |
| 39 | Catalytic mechanism of human DNA polymerase λ with Mg2+ and Mn2+ from ab initio quantum<br>mechanical/molecular mechanical studies. DNA Repair, 2008, 7, 1824-1834.                                                                    | 1.3  | 52        |
| 40 | Tolerance for 8-oxoguanine but not thymine glycol in alignment-based gap filling of partially<br>complementary double-strand break ends by DNA polymerase λ in human nuclear extracts. Nucleic Acids<br>Research, 2008, 36, 2895-2905. | 6.5  | 16        |
| 41 | Multiple Functions of DNA Polymerases. Critical Reviews in Plant Sciences, 2007, 26, 105-122.                                                                                                                                          | 2.7  | 85        |
| 42 | Structural insight into the substrate specificity of DNA Polymerase μ. Nature Structural and<br>Molecular Biology, 2007, 14, 45-53.                                                                                                    | 3.6  | 89        |
| 43 | A unique error signature for human DNA polymerase ν. DNA Repair, 2007, 6, 213-223.                                                                                                                                                     | 1.3  | 44        |
| 44 | Role of the catalytic metal during polymerization by DNA polymerase lambda. DNA Repair, 2007, 6, 1333-1340.                                                                                                                            | 1.3  | 62        |
| 45 | The X family portrait: Structural insights into biological functions of X family polymerases. DNA<br>Repair, 2007, 6, 1709-1725.                                                                                                       | 1.3  | 158       |
| 46 | Structural Analysis of Strand Misalignment during DNA Synthesis by a Human DNA Polymerase. Cell, 2006, 124, 331-342.                                                                                                                   | 13.5 | 94        |
| 47 | Mechanism of a genetic glissando*: structural biology of indel mutations. Trends in Biochemical Sciences, 2006, 31, 206-214.                                                                                                           | 3.7  | 146       |
| 48 | Promiscuous mismatch extension by human DNA polymerase lambda. Nucleic Acids Research, 2006, 34, 3259-3266.                                                                                                                            | 6.5  | 38        |
| 49 | A closed conformation for the Pol λ catalytic cycle. Nature Structural and Molecular Biology, 2005, 12, 97-98.                                                                                                                         | 3.6  | 138       |
| 50 | Biochemical Properties of Saccharomyces cerevisiae DNA Polymerase IV. Journal of Biological Chemistry, 2005, 280, 20051-20058.                                                                                                         | 1.6  | 56        |
| 51 | A Gradient of Template Dependence Defines Distinct Biological Roles for Family X Polymerases in<br>Nonhomologous End Joining. Molecular Cell, 2005, 19, 357-366.                                                                       | 4.5  | 294       |
| 52 | Structure–function studies of DNA polymerase lambda. DNA Repair, 2005, 4, 1358-1367.                                                                                                                                                   | 1.3  | 62        |
| 53 | Implication of DNA Polymerase λ in Alignment-based Gap Filling for Nonhomologous DNA End Joining in<br>Human Nuclear Extracts. Journal of Biological Chemistry, 2004, 279, 805-811.                                                    | 1.6  | 184       |
| 54 | A Structural Solution for the DNA Polymerase λ-Dependent Repair of DNA Gaps with Minimal Homology.<br>Molecular Cell, 2004, 13, 561-572.                                                                                               | 4.5  | 119       |

4

MIGUEL GARCIA-DIAZ

| #  | Article                                                                                                                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | DNA Polymerase X of African Swine Fever Virus: Insertion Fidelity on Gapped DNA substrates and AP<br>lyase Activity Support a Role in Base Excision Repair of Viral DNA. Journal of Molecular Biology, 2003,<br>326, 1403-1412.                                                                                                   | 2.0 | 47        |
| 56 | Lack of sugar discrimination by human Pol  requires a single glycine residue. Nucleic Acids Research,<br>2003, 31, 4441-4449.                                                                                                                                                                                                     | 6.5 | 87        |
| 57 | The Frameshift Infidelity of Human DNA Polymerase λ. Journal of Biological Chemistry, 2003, 278,<br>34685-34690.                                                                                                                                                                                                                  | 1.6 | 101       |
| 58 | Are There Mutator Polymerases?. Scientific World Journal, The, 2003, 3, 422-431.                                                                                                                                                                                                                                                  | 0.8 | 2         |
| 59 | DNA Polymerase λ, a Novel DNA Repair Enzyme in Human Cells. Journal of Biological Chemistry, 2002, 277,<br>13184-13191.                                                                                                                                                                                                           | 1.6 | 166       |
| 60 | High Efficiency of Glycerol 2-Phosphate and sn -Glycerol 3-Phosphate as Nucleotidyl Acceptors in<br>Snake Venom Phosphodiesterase Esterifications. Formation of Primary and Secondary AMP-O-Glyceryl<br>and AMP-O-Glycerophosphoryl Esters and Evidence for an Acceptor-Binding Enzyme Site. FEBS Journal,<br>1995, 233, 442-447. | 0.2 | 5         |
| 61 | Alcohol esterification reactions and mechanisms of snake venom 5'-nucleotide phosphodiesterase.<br>FEBS Journal, 1993, 213, 1139-1148.                                                                                                                                                                                            | 0.2 | 17        |
| 62 | Methanol esterification reactions catalyzed by snake venom and bovine intestinal 5'-nucleotide phosphodiesterases. Formation of nucleoside 5'-monophosphate methyl esters from guanosine 5'-triphosphate and other nucleoside 5'-polyphosphates. FEBS Journal, 1991, 196, 451-457.                                                | 0.2 | 12        |
| 63 | A specific, low K m ADP-ribose pyrophosphatase from rat liver. FEBS Letters, 1989, 244, 123-126.                                                                                                                                                                                                                                  | 1.3 | 27        |