
Takeo Hyodo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7949719/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Preparation and gas-sensing properties of thermally stable mesoporous SnO2. Sensors and Actuators B: Chemical, 2002, 83, 209-215.	4.0	196
2	Gas-sensing properties of ordered mesoporous SnO2 and effects of coatings thereof. Sensors and Actuators B: Chemical, 2003, 93, 590-600.	4.0	182
3	Enhanced NO 2 gas sensing performance of bare and Pd-loaded SnO 2 thick film sensors under UV-light irradiation at room temperature. Sensors and Actuators B: Chemical, 2016, 223, 429-439.	4.0	174
4	High H2 sensing performance of anodically oxidized TiO2 film contacted with Pd. Sensors and Actuators B: Chemical, 2002, 83, 195-201.	4.0	173
5	Synthesis of mesoporous TiO2-based powders and their gas-sensing properties. Sensors and Actuators B: Chemical, 2002, 87, 122-129.	4.0	170
6	Microsphere Templating as Means of Enhancing Surface Activity and Gas Sensitivity of CaCu3Ti4O12Thin Films. Nano Letters, 2006, 6, 193-198.	4.5	147
7	Preparation of macroporous SnO films using PMMA microspheres and their sensing properties to NO and H. Sensors and Actuators B: Chemical, 2005, 106, 580-590.	4.0	138
8	Improvement of SO2 sensing properties of WO3 by noble metal loading. Sensors and Actuators B: Chemical, 2001, 77, 35-40.	4.0	136
9	Catalytic Activities of Rareâ€Earth Manganites for Cathodic Reduction of Oxygen in Alkaline Solution. Journal of the Electrochemical Society, 1996, 143, L266-L267.	1.3	120
10	Preparation of large mesoporous SnO2 powder for gas sensor application. Sensors and Actuators B: Chemical, 2005, 108, 56-61.	4.0	106
11	Hydrogen-sensing properties of anodically oxidized TiO2 film sensors. Sensors and Actuators B: Chemical, 2005, 108, 467-472.	4.0	92
12	Semiconductor-type SnO2-based NO2 sensors operated at room temperature under UV-light irradiation. Sensors and Actuators B: Chemical, 2017, 253, 630-640.	4.0	88
13	Mesoporous semiconducting oxides for gas sensor application. Journal of the European Ceramic Society, 2004, 24, 1389-1398.	2.8	87
14	H2 sensing properties and mechanism of anodically oxidized TiO2 film contacted with Pd electrode. Sensors and Actuators B: Chemical, 2003, 93, 519-525.	4.0	81
15	H2 sensing performance of anodically oxidized TiO2 thin films equipped with Pd electrode. Sensors and Actuators B: Chemical, 2007, 121, 219-230.	4.0	71
16	NO2 sensing properties of macroporous In2O3-based powders fabricated by utilizing ultrasonic spray pyrolysis employing polymethylmethacrylate microspheres as a template. Sensors and Actuators B: Chemical, 2010, 151, 265-273.	4.0	67
17	Synthesis and gas-sensing properties of nano- and meso-porous MoO3-doped SnO2. Sensors and Actuators B: Chemical, 2010, 147, 554-560.	4.0	66
18	Effects of Surface Modification of Platinum Electrodes with Gold on Hydrogen-Sensing Properties of Diode-Type Sensors. , 2022, 1, 013602.		64

ΤΑΚΕΟ ΗΥΟΟΟ

#	Article	IF	CITATIONS
19	Improved Toluene Response of Mixed-Potential Type YSZ-Based Gas Sensors Using CeO ₂ -Added Au Electrodes. , 2022, 1, 013604.		64
20	Electromagnetic wave absorption properties of carbonyl iron-ferrite/PMMA composites fabricated by hybridization method. Journal of Magnetism and Magnetic Materials, 2007, 312, 181-186.	1.0	61
21	Preparation of porous tin dioxide powder by ultrasonic spray pyrolysis and their application to sensor materials. Sensors and Actuators B: Chemical, 2008, 133, 144-150.	4.0	60
22	Effect of macrostructural control of an auxiliary layer on the CO2 sensing properties of NASICON-based gas sensors. Sensors and Actuators B: Chemical, 2009, 139, 563-569.	4.0	56
23	Correlation between methylmercaptan gas-sensing properties and its surface chemistry of SnO2-based sensor materials. Sensors and Actuators B: Chemical, 2000, 65, 349-357.	4.0	55
24	Hydrogen sensing properties of SnO2 varistors loaded with SiO2 by surface chemical modification with diethoxydimethylsilane. Sensors and Actuators B: Chemical, 2000, 64, 175-181.	4.0	44
25	Design of anodically oxidized Nb2O5 films as a diode-type H2 sensing material. Sensors and Actuators B: Chemical, 2006, 117, 359-366.	4.0	43
26	H ₂ Sensing Properties and Mechanism of Nb ₂ O ₅ - Bi ₂ O ₃ Varistor - type Gas Sensors. Electrochemistry, 2000, 68, 24-31.	0.6	40
27	Gas sensing properties of semiconductor heterolayer sensors fabricated by slide-off transfer printing. Sensors and Actuators B: Chemical, 2001, 77, 41-47.	4.0	39
28	Macroporous and nanosized ceramic films prepared by modified sol-gel method with PMMA microsphere templates. Journal of the European Ceramic Society, 2004, 24, 1961-1967.	2.8	39
29	Enhancement of methylmercaptan sensing response of WO3 semiconductor gas sensors by gas reactivity and gas diffusivity. Sensors and Actuators B: Chemical, 2018, 273, 826-833.	4.0	39
30	Meso- to Macro-Porous Oxides as Semiconductor Gas Sensors. Catalysis Surveys From Asia, 2004, 8, 127-135.	1.0	36
31	Bulk acoustic wave resonator as a sensing platform for NOx at high temperatures. Sensors and Actuators B: Chemical, 2005, 108, 547-552.	4.0	36
32	Enhanced sensing response of solid-electrolyte gas sensors to toluene: Role of composite Au/metal oxide sensing electrode. Sensors and Actuators B: Chemical, 2017, 252, 268-276.	4.0	36
33	Effects of microstructure of mesoporous SnO2 powders on their H2 sensing properties. Sensors and Actuators B: Chemical, 2009, 141, 465-470.	4.0	35
34	Porous In2O3 powders prepared by ultrasonic-spray pyrolysis as a NO2-sensing material: Utilization of polymethylmethacrylate microspheres synthesized by ultrasonic-assisted emulsion polymerization as a template. Sensors and Actuators B: Chemical, 2013, 187, 495-502.	4.0	34
35	Effect of surface modification on NO2 sensing properties of SnO2 varistor-type sensors. Sensors and Actuators B: Chemical, 1999, 60, 118-124.	4.0	33
36	Effects of Gas Adsorption Properties of an Au-Loaded Porous In ₂ O ₃ Sensor on NO ₂ -Sensing Properties. ACS Sensors, 2021, 6, 4019-4028.	4.0	33

ΤΑΚΕΟ ΗΥΟDO

#	Article	IF	CITATIONS
37	Title is missing!. Journal of Materials Science, 2002, 37, 2317-2321.	1.7	32
38	lonâ€Exchange Loading of Yttrium Acetate as a Sintering Aid on Aluminum Nitride Powder via Aqueous Processing. Journal of the American Ceramic Society, 2000, 83, 2793-2797.	1.9	32
39	Title is missing!. Journal of Applied Electrochemistry, 1997, 27, 745-745.	1.5	31
40	Effects of surface modification of noble-metal sensing electrodes with Au on the hydrogen-sensing properties of diode-type gas sensors employing an anodized titania film. Sensors and Actuators B: Chemical, 2015, 207, 105-116.	4.0	31
41	CO-sensing Properties of Potentiometric Gas Sensors Using an Anion-conducting Polymer Electrolyte and Au-loaded Metal Oxide Electrodes. Electrochimica Acta, 2015, 166, 232-243.	2.6	30
42	Microstructural control of porous In2O3 powders prepared by ultrasonic-spray pyrolysis employing self-synthesized polymethylmethacrylate microspheres as a template and their NO2-sensing properties. Sensors and Actuators B: Chemical, 2017, 244, 992-1003.	4.0	30
43	Synthesis and H2 gas sensing properties of tin oxide nanohole arrays with various electrodes. Sensors and Actuators B: Chemical, 2006, 113, 852-856.	4.0	29
44	CO-sensing properties of a NASICON-based gas sensor attached with Pt mixed with Bi2O3 as a sensing electrode. Electrochimica Acta, 2015, 155, 8-15.	2.6	28
45	Synergistic Effects of PdO <i>_x</i> –CuO <i>_x</i> Loadings on Methyl Mercaptan Sensing of Porous WO ₃ Microspheres Prepared by Ultrasonic Spray Pyrolysis. ACS Applied Materials & Interfaces, 2020, 12, 41728-41739.	4.0	28
46	Effects of Pt loading onto SnO2 electrodes on CO-sensing properties and mechanism of potentiometric gas sensors utilizing an anion-conducting polymer electrolyte. Sensors and Actuators B: Chemical, 2019, 300, 127041.	4.0	27
47	CO and CO2 sensing properties of electrochemical gas sensors using an anion-conducting polymer as an electrolyte. Electrochimica Acta, 2012, 82, 19-25.	2.6	26
48	Adsorption/combustion-type VOC sensors employing mesoporous γ-alumina co-loaded with noble-metal and oxide. Sensors and Actuators B: Chemical, 2015, 220, 1091-1104.	4.0	26
49	Potentiometric CO sensors using anion-conducting polymer electrolyte: Effects of the kinds of noble metal-loaded metal oxides as sensing-electrode materials on CO-sensing properties. Sensors and Actuators B: Chemical, 2019, 287, 42-52.	4.0	26
50	Effects of polytetrafluoroethylene or polyimide coating on H2 sensing properties of anodized TiO2 films equipped with Pd–Pt electrodes. Sensors and Actuators B: Chemical, 2013, 183, 253-264.	4.0	25
51	Effects of composition and structure of sensing electrode on NO2 sensing properties of mixed potential-type YSZ-based gas sensors. Sensors and Actuators B: Chemical, 2016, 237, 247-255.	4.0	25
52	Preparation of Thermally Stable Mesoporous Tin Dioxide Powders with High Specific Surface Area by Utilizing Self-Assembly of Surfactants Journal of the Ceramic Society of Japan, 2001, 109, 481-483.	1.3	24
53	Potentiometric Carbon Monoxide Sensors Using an Anion-Conducting Polymer Electrolyte and Au-Loaded SnO ₂ Electrodes. Journal of the Electrochemical Society, 2016, 163, B300-B308.	1.3	24
54	Photochemical Synthesis of Monodispersed Ceria Nanocrystals in Simple Cerium Nitrate Solution without Additives. Crystal Growth and Design, 2011, 11, 1202-1207.	1.4	23

Τάκεο Ηγοdo

#	Article	IF	CITATIONS
55	NOx Sensing Properties of Varistor-Type Gas Sensors Consisting of Micro p-n Junctions. , 2001, 6, 209-217.		22
56	Effect of Core Materials on the Formation of Hollow Alumina Microspheres by Mechanofusion Process. Journal of the American Ceramic Society, 2004, 87, 60-67.	1.9	21
57	Nanostructured Pr-doped Ceria (PCO) thin films as sensing electrodes in solid-electrolyte type gas sensors with enhanced toluene sensitivity. Sensors and Actuators B: Chemical, 2020, 317, 128037.	4.0	21
58	H2 sensing properties of diode-type gas sensors fabricated with Ti- and/or Nb-based materials. Sensors and Actuators B: Chemical, 2009, 142, 97-104.	4.0	20
59	Acetaldehyde Gas‧ensing Properties and Surface Chemistry of SnO2 â€â€‰Based Sensor Materials. Jour the Electrochemical Society, 1999, 146, 1222-1226.	nal of 1.3	19
60	Enhanced NO2-Sensing Properties of Au-Loaded Porous In2O3 Gas Sensors at Low Operating Temperatures. Chemosensors, 2020, 8, 72.	1.8	19
61	Design of Mesoporous Oxides as Semiconductor Gas Sensor Materials. Electrochemistry, 2003, 71, 387-393.	0.6	18
62	Preparation of Hollow Alumina Microspheres by Ultrasonic Spray Pyrolysis Journal of the Ceramic Society of Japan, 2002, 110, 146-148.	1.3	16
63	Preparation of hollow alumina microspheres by microwave-induced plasma pyrolysis of atomized precursor solution. Journal of the European Ceramic Society, 2005, 25, 3563-3572.	2.8	16
64	Fabrication of porous alumina ceramics having cell windows with controlled size by PMMA template method. Journal of Materials Science, 2010, 45, 3602-3609.	1.7	16
65	Preparation of Mesoporous and/or Macroporous SnO2-Based Powders and Their Gas-Sensing Properties as Thick Film Sensors. Sensors, 2011, 11, 1261-1276.	2.1	16
66	Gas Diffusion-Type Oxygen Electrode using Perovskite-Type Oxides for Rechargeable Metal-Air Batteriees. Electrochemistry, 1993, 61, 1458-1460.	0.3	15
67	Electrochemical Oxygen Reduction Properties of Perovskite-type Oxides La _{1â^'} <i>_x</i> A <i>_x<td>gt;1\/66O&l</td><td>t;s⊮b>3&</td></i>	gt ;1\/ 66O&l	t;s ⊮ b>3&
68	Visible-Light-Enhanced Electroless Deposition of Nanostructured Iron Oxyhydroxide Thin Films. Journal of Physical Chemistry C, 2010, 114, 3707-3711.	1.5	14
69	Adsorption/Combustion-type Micro Gas Sensors: Typical VOC-sensing Properties and Material-design Approach for Highly Sensitive and Selective VOC Detection. Analytical Sciences, 2020, 36, 401-411.	0.8	14
70	NO _x Sensing Properties of WO ₃ -based Semiconductor Gas Sensors Fabricated by Slide-off Transfer Printing. Electrochemistry, 2003, 71, 481-484.	0.6	14
71	Preparation of Thermally Stable Mesoporous TiO ₂ Powder and its Gas Sensor Application. Electrochemistry, 2003, 71, 475-480.	0.6	13
72	Three dimensional arrays of hollow gadolinia-doped ceria microspheres prepared by r.f. magnetron sputtering employing PMMA microsphere templates. Journal of Electroceramics, 2006, 17, 695-699.	0.8	12

ΤΑΚΕΟ ΗΥΟΟΟ

#	Article	IF	CITATIONS
73	Preparation and Gas Sensor Application of Ceramic Particles with Submicron-Size Spherical Macropores. Sensor Letters, 2008, 6, 887-890.	0.4	12
74	H ₂ S Sensing Properties of Macroporous In ₂ O ₃ -Based Sensors. Sensor Letters, 2011, 9, 369-373.	0.4	12
75	Adsorption/combustion-type gas sensors employing mesoporous γ-alumina loaded with core(Au)/shell(Pd) nanoparticles synthesized by sonochemical reduction. Sensors and Actuators B: Chemical, 2014, 202, 748-757.	4.0	11
76	Multicolour photochromism of colloidal solutions of niobate nanosheets intercalated with several kinds of metal ions. Chemical Communications, 2016, 52, 3308-3311.	2.2	11
77	Mesoporous Al2O3 Co-Loaded with Pd and Au as a Combustion Catalyst for Adsorption/Combustion-Type Gas Sensors. Sensor Letters, 2011, 9, 409-413.	0.4	11
78	Gas Diffusion-Type Oxygen Electrode Using Perovskite-Type Oxides for Metal-Air Batteries. Materials Research Society Symposia Proceedings, 1995, 393, 79.	0.1	9
79	Bi-Functional Oxygen Electrodes Using Pr-Mn-Fe-Based Perovskite-Type Oxides as Catalysts. Materials Science Forum, 1999, 315-317, 562-569.	0.3	9
80	Improvement in NO2 Sensing Properties of Semiconductor-Type Gas Sensors by Loading of Au Into Porous In2O3 Powders. Frontiers in Materials, 2019, 6, .	1.2	9
81	Preparation of Core/Shell Microspheres of Polymethylmethacrylate/Alumina by Mechanofusion as a Precursor of Hollow Alumina Microspheres. Molecular Crystals and Liquid Crystals, 2002, 376, 101-106.	0.4	8
82	Effect of Simultaneous Modification with Metal Loading and Mesoporous Layer on H2 Sensing Properties of SnO2 Thick Film Sensors. IEEJ Transactions on Sensors and Micromachines, 2005, 125, 70-74.	0.0	8
83	Preparation of Macroporous Semiconductor Gas Sensors and Their Odur Sensing Properties. IEEJ Transactions on Sensors and Micromachines, 2008, 128, 141-144.	0.0	8
84	Decomposition of Trichlorotrifluoroethane by Microwaveâ€induced Ar Plasma Generated from SiC Ceramics under Atmospheric Pressure. Journal of the Electrochemical Society, 1999, 146, 3052-3057.	1.3	7
85	H ₂ Sensing Performance of TiO ₂ -Based Diode-Type Sensors. Advanced Materials Research, 0, 47-50, 1510-1513.	0.3	7
86	Preparation of Macroporous Eu-Doped Oxide Thick Films and Their Application to Gas Sensor Materials. IEEJ Transactions on Sensors and Micromachines, 2008, 128, 137-140.	0.0	7
87	Diode-Type H ₂ Sensors Using Anodized TiO ₂ Films-Structural and Compositional Controls of Noble Metal Sensing Electrodes. Sensor Letters, 2011, 9, 641-645.	0.4	7
88	Effects of Noble Metal Loading to Mesoporous SnO ₂ on the Gas-Sensing Properties. Sensor Letters, 2011, 9, 646-650.	0.4	7
89	Oxygen Reduction Activities of Praseodymium Manganites in Alkaline Solution. Journal of the Ceramic Society of Japan, 1997, 105, 412-417.	1.3	6
90	Preparation of Hollow Alumina Microspheres by Mechanofusion and Ultrasonic Spray Pyrolysis. Key Engineering Materials, 2003, 247, 427-432.	0.4	6

ΤΑΚΕΟ ΗΥΟΟΟ

#	Article	IF	CITATIONS
91	Fabrication of Highly Porous Alumina-Based Ceramics with Connected Spaces by Employing PMMA Microspheres as a Template. Advances in Materials Science and Engineering, 2009, 2009, 1-9.	1.0	6
92	Hydrogen Sensing Properties of an Anodized TiO2 Film Equipped with a Pd-Pt Electrode. ECS Transactions, 2009, 16, 293-299.	0.3	6
93	CO Sensing Properties of Electrochemical Gas Sensors Using an Anion-Conducting Polymer as an Electrolyte. ECS Transactions, 2013, 50, 267-272.	0.3	6
94	Decomposition of Organic Compounds by Microwave-induced Plasma in Liquid Phase. Electrochemistry, 2004, 72, 92-96.	0.6	6
95	NO _x Gas Sensing Properties and Mechanism of ZnO-Based Varistor-Type Gas Sensors. IEEJ Transactions on Sensors and Micromachines, 1999, 119, 103-107.	0.0	5
96	Improvement of Long-Term Stability of Thin Film Gas Sensors by Ion Beam-Assisted Deposition. Journal of the Electrochemical Society, 2000, 147, 4379.	1.3	5
97	Enhanced CO Response of NASICON-based Gas Sensors Using Oxide-added Pt Sensing Electrode at Low Temperature Operation. Electrochemistry, 2017, 85, 174-178.	0.6	5
98	Enhanced catalytic activity and thermal stability of lipase bound to oxide nanosheets. RSC Advances, 2018, 8, 20347-20352.	1.7	5
99	Effects of noble-metal loading and ultraviolet-light irradiation on gas-sensing properties of porous indium oxide films at room temperature. Journal of the Ceramic Society of Japan, 2021, 129, 676-682.	0.5	5
100	Diode-type Gas Sensors Fabricated with a Titania Film on a Ti Plate and Pd-Pt Electrodes –Effects of Polymer Coating on the Hydrogen-sensing Properties–. IOP Conference Series: Materials Science and Engineering, 2011, 18, 212006.	0.3	4
101	VOC-Sensing Properties of Adsorption/Combustion-Type Micro Gas Sensors Using Mesoporous Alumina Co-Loaded with Pt and Metal Oxide. ECS Transactions, 2016, 75, 23-29.	0.3	4
102	SO ₂ Sensing Mechanism of Ag/WO ₃ . Surface States and Electronic Interactions. Electrochemistry, 2001, 69, 109-116.	0.6	3
103	Preparation of Ordered Macroporous Ceramic Films Using PMMA Microspheres as Templates. Key Engineering Materials, 2003, 247, 423-426.	0.4	3
104	NO2 Sensing Properties of Porous In2O3-Based Powders Prepared by Utilizing Ultrasonic-Spray Pyrolysis Employing PMMA Microsphere Templates: Effects of the Size of the PMMA Microspheres on Their Gas-Sensing Properties. ECS Transactions, 2013, 50, 273-278.	0.3	3
105	(Invited) Design of Highly Sensitive and Selective Diode-Type H2 Sensors. ECS Transactions, 2016, 75, 115-122.	0.3	3
106	Toluene-sensing Properties of Mixed-potential Type Yttria-stabilized Zirconia-based Gas Sensors Attached with Thin CeO ₂ -added Au Electrodes. Analytical Sciences, 2020, 36, 287-290.	0.8	3
107	Structural Control of Macroporous Noble Metals as Glucose Sensing Electrode Materials. Sensor Letters, 2008, 6, 916-919.	0.4	3
108	Decomposition of Toxic Halogenated Hydrocarbons by Microwave-Induced Ar Plasma Generated from SiC Ceramics under Atmospheric Pressure. Electrochemistry, 2001, 69, 508-515.	0.6	3

Τάκεο Ηγοdo

#	Article	IF	CITATIONS
109	Decomposition of Chlorinated Aromatics by Microwave-induced Ar Plasma Generated using SiC Ceramic Trigger under Atmospheric Pressure. Electrochemistry, 2003, 71, 860-865.	0.6	3
110	Synergistic Effect of Pt-Loading and Mesoporous SnO2 Layer-Coating on the Gas Sensing Properties of SnO2 Thick Film Sensors. IEEJ Transactions on Sensors and Micromachines, 2006, 126, 492-493.	0.0	3
111	Preparation of Aluminum Nitride Powder from Aluminum Chloride/Ethylenediamine Precursor Journal of the Ceramic Society of Japan, 2001, 109, 709-711.	1.3	2
112	Microstructural Control of BaTiO3 Thick Film Fabricated by Utilizing Slide-Off Transfer Printing. Journal of Electroceramics, 2004, 13, 519-524.	0.8	2
113	Fabrication of Macroporous Pt Film Electrode. Journal of the Ceramic Society of Japan, 2004, 112, 619-622.	1.3	2
114	Preparation and characterization of polyethylene-based hybrid particles by an environmentally-friendly and aqueous solvent evaporation method. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 318, 206-216.	2.3	2
115	H2S Sensing Properties and Mechanism of Macroporous Semiconductor Sensors. ECS Transactions, 2008, 16, 317-323.	0.3	2
116	Sensing Properties of Diode-Type Gas Sensors. Advances in Science and Technology, 0, , .	0.2	2
117	CO-Sensing Properties of Diode-Type Gas Sensors Employing Anodized Titania and Noble-Metal Electrodes under Hydrogen Atmosphere. Chemosensors, 2018, 6, 7.	1.8	2
118	Basic Gas-Sensing Properties of Photoluminescent Eu2O3-Mixed SnO2-Based Materials with Submicron-Size Macropores. Journal of Nanoscience and Nanotechnology, 2019, 19, 5351-5360.	0.9	2
119	Effects of catalytic combustion behavior and adsorption/desorption properties on ethanol-sensing characteristics of adsorption/combustion-type gas sensors. Journal of Asian Ceramic Societies, 2021, 9, 1015-1030.	1.0	2
120	Preparation of Thermally Stable Mesoporous Tin Oxide as a Semiconductor Gas Sensor Material. , 2001, , 816-819.		2
121	Preparation of Thermally Stable Large Mesoporous SnO ₂ Powders by Employing a Triblock Copolymer. Electrochemistry, 2004, 72, 399-401.	0.6	2
122	Solid-State ISFET-Based Sensors Capable of Measuring Acidity of Lubricants. ECS Transactions, 2020, 98, 59-66.	0.3	2
123	Surface Modified Silicon Nitride Powder with Highly Dispersed Sintering Aid via Aqueous Processing Journal of the Ceramic Society of Japan, 2000, 108, 790-794.	1.3	1
124	Nanostructured titania (TiO 2) as hydrogen gas sensor. , 2003, , .		1
125	Sn-modified Ni-nanowire array films prepared by electrodeposition and their electrochemical properties as an anode material of lithium-ion batteries. , 2012, , .		1
126	Enhancement of Acetaldehyde Sensitivity of SnO ₂ by Simultaneous Addition of Rh and La ₂ O ₃ . IEEJ Transactions on Sensors and Micromachines, 2000, 120, 482-483.	0.0	1

Τάκεο Ηγοdo

#	Article	IF	CITATIONS
127	Development of a new preparation method of thermally stable mesoporous titania and its application to gas sensors. , 0, , .		0
128	Design of anodically oxidized metal oxide films as a gas sensor material. , 0, , .		0
129	Dye-sensitized solar cells using an anion-conducting polymer as a material of solid-state electrolyte. , 2012, , .		0
130	Microstructural Controls of a Titania Electrode for Dye-Sensitized Solar Cells. ECS Transactions, 2013, 50, 3-10.	0.3	0
131	Effects of Surface Modification of Noble-Metal Electrodes with Au on the H2-Sensing Properties of Diode-Type Gas Sensors. ECS Transactions, 2013, 50, 171-178.	0.3	0
132	Mechano-Processing of Hollow and/or Composite Bio-Materials. Hosokawa Powder Technology Foundation ANNUAL REPORT, 2007, 15, 77-81.	0.0	0
133	P1.0.7 Preparation of Porous In2O3 Powders by Ultrasonic-spray Pyrolysis Employing PMMA Microspheres Synthesized by Emulsion Polymerization and Their Gas-sensing Properties. , 2012, , .		0
134	2.3.3 H2 Sensing Properties of Diode-type Sensors Fabricated with Anodized TiO2 Films Equipped with Polymer Coated Pd-Pt Electrodes. , 2012, , .		0
135	Effects of Hexamethyldisilazane Modification on Gas-Sensing Properties of Semiconductor Gas Sensors. ECS Transactions, 2020, 98, 67-73.	0.3	0
136	Effects of Hexamethyldisilazane Modification on Gas-Sensing Properties of Semiconductor Gas Sensors. ECS Meeting Abstracts, 2020, MA2020-02, 3336-3336.	0.0	0