
Gabriele Gl Lobaccaro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7948653/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Review of Systems and Technologies for Smart Homes and Smart Grids. Energies, 2016, 9, 348.	1.6	209
2	Comparative analysis of green actions to improve outdoor thermal comfort inside typical urban street canyons. Urban Climate, 2015, 14, 251-267.	2.4	131
3	A cross-country perspective on solar energy in urban planning: Lessons learned from international case studies. Renewable and Sustainable Energy Reviews, 2019, 108, 209-237.	8.2	82
4	Parametric design to minimize the embodied GHG emissions in a ZEB. Energy and Buildings, 2018, 167, 106-123.	3.1	81
5	A methodology to improve the performance of PV integrated shading devices using multi-objective optimization. Applied Energy, 2019, 247, 731-744.	5.1	78
6	Boosting solar accessibility and potential of urban districts in the Nordic climate: A case study in Trondheim. Solar Energy, 2017, 149, 347-369.	2.9	66
7	Solar Energy in Urban Environment: How Urban Densification Affects Existing Buildings. Energy Procedia, 2014, 48, 1559-1569.	1.8	64
8	A Methodological Analysis Approach to Assess Solar Energy Potential at the Neighborhood Scale. Energies, 2019, 12, 3554.	1.6	45
9	Optimization of Solar Energy Potential for Buildings in Urban Areas – A Norwegian Case Study. Energy Procedia, 2014, 58, 166-171.	1.8	32
10	Modelling of double skin facades in whole-building energy simulation tools: A review of current practices and possibilities for future developments. Building Simulation, 2019, 12, 3-27.	3.0	32
11	Benefits of bifacial solar cells combined with low voltage power grids at high latitudes. Renewable and Sustainable Energy Reviews, 2022, 161, 112354.	8.2	32
12	Effects of Orientations, Aspect Ratios, Pavement Materials and Vegetation Elements on Thermal Stress inside Typical Urban Canyons. International Journal of Environmental Research and Public Health, 2019, 16, 3574.	1.2	31
13	An inverse approach to identify selective angular properties of retro-reflective materials for urban heat island mitigation. Solar Energy, 2018, 176, 194-210.	2.9	27
14	The effect of spatial and temporal randomness of stochastically generated occupancy schedules on the energy performance of a multiresidential building. Energy and Buildings, 2016, 127, 279-300.	3.1	26
15	Balancing competing parameters in search of optimal configurations for a fix louvre blade system with integrated PV. Energy Procedia, 2017, 122, 607-612.	1.8	25
16	A holistic approach to assess the exploitation of renewable energy sources for design interventions in the early design phases. Energy and Buildings, 2018, 175, 235-256.	3.1	25
17	Intermediaries for knowledge transfer in integrated energy planning of urban districts. Technological Forecasting and Social Change, 2019, 142, 354-363.	6.2	24
18	District Geometry Simulation: A Study for the Optimization of Solar Façades in Urban Canopy Layers. Energy Procedia, 2012, 30, 1163-1172.	1.8	22

GABRIELE GL LOBACCARO

#	Article	IF	CITATIONS
19	Exploiting selective angular properties of retro-reflective coatings to mitigate solar irradiation within the urban canyon. Solar Energy, 2019, 189, 74-85.	2.9	20
20	Tall buildings cluster form rationalization in a Nordic climate by factoring in indoor-outdoor comfort and energy. Energy and Buildings, 2021, 238, 110831.	3.1	20
21	SolarPW: A New Solar Design Tool to Exploit Solar Potential in Existing Urban Areas. Energy Procedia, 2012, 30, 1173-1183.	1.8	19
22	Parametric Design to Maximize Solar Irradiation and Minimize the Embodied GHG Emissions for a ZEB in Nordic and Mediterranean Climate Zones. Energies, 2020, 13, 4981.	1.6	19
23	Digital and physical models for the validation of sustainable design strategies. Automation in Construction, 2014, 39, 1-14.	4.8	15
24	Solar Energy in the Nordic Built Environment: Challenges, Opportunities and Barriers. Energies, 2021, 14, 8410.	1.6	14
25	Photovoltaics on Landmark Buildings with Distinctive Geometries. Applied Sciences (Switzerland), 2020, 10, 6696.	1.3	13
26	Solar Optimization of Housing Development. Energy Procedia, 2016, 91, 868-875.	1.8	12
27	Development and validation of a Monte Carlo-based numerical model for solar analyses in urban canyon configurations. Building and Environment, 2020, 170, 106638.	3.0	12
28	Solar Energy in Urban Planning: Lesson Learned and Recommendations from Six Italian Case Studies. Applied Sciences (Switzerland), 2022, 12, 2950.	1.3	11
29	Effects of retro-reflective and angular-selective retro-reflective materials on solar energy in urban canyons. Solar Energy, 2020, 209, 662-673.	2.9	10
30	Applications of Models and Tools for Mesoscale and Microscale Thermal Analysis in Mid-Latitude Climate Regions—A Review. Sustainability, 2021, 13, 12385.	1.6	6
31	Current Trajectories and New Challenges for Visual Comfort Assessment in Building Design and Operation: A Critical Review. Applied Sciences (Switzerland), 2022, 12, 3018.	1.3	3
32	Urban overheating mitigation through facades: the role of new and innovative cool coatings. , 2022, , 61-87.		1