Frank P Lucien

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7948650/publications.pdf

Version: 2024-02-01

471477 454934 48 953 17 30 citations h-index g-index papers 51 51 51 952 citing authors docs citations times ranked all docs

#	Article	lF	CITATIONS
1	Quiescent Mineralisation for Free-standing Mineral Microfilms with a Hybrid Structure. Journal of Colloid and Interface Science, 2021, 604, 327-339.	9.4	3
2	Dynamic Mineralization: Lowâ€Temperature, Rapid, and Multidirectional Process to Encapsulate Polyetherâ€Etherâ€Ketone with Carbonateâ€Rich Hydroxyapatite for Osseointegration. Advanced Materials Interfaces, 2021, 8, 2100333.	3.7	4
3	Dynamic Mineralization: Lowâ€Temperature, Rapid, and Multidirectional Process to Encapsulate Polyetherâ€Etherâ€Ketone with Carbonateâ€Rich Hydroxyapatite for Osseointegration (Adv. Mater.) Tj ETQq1	1 0. 38 4314	4 rgBT /Over <mark>lo</mark>
4	Polymerizationâ€Induced Selfâ€Assembly under Compressed CO ₂ : Control of Morphology Using a CO ₂ â€Responsive MacroRAFT Agent. Macromolecular Rapid Communications, 2019, 40, e1800335.	3.9	36
5	Aqueous heterogeneous radical polymerization of styrene under compressed ethane. Journal of Supercritical Fluids, 2018, 142, 45-51.	3.2	1
6	Mechanistic Aspects of Aqueous Heterogeneous Radical Polymerization of Styrene under Compressed CO ₂ . Macromolecular Chemistry and Physics, 2017, 218, 1700128.	2.2	4
7	Water and Carbon Dioxide: A Unique Solvent for the Catalytic Polymerization of Ethylene in Miniemulsion. Chemistry - an Asian Journal, 2017, 12, 2057-2061.	3.3	5
8	Radical polymerization of miniemulsions induced by compressed gases. RSC Advances, 2016, 6, 50650-50657.	3.6	5
9	Polymerization induced self-assembly: tuning of nano-object morphology by use of CO ₂ . Polymer Chemistry, 2015, 6, 2249-2254.	3.9	65
10	Synthesis of crosslinked polymeric nanocapsules using catanionic vesicle templates stabilized by compressed CO2. Soft Matter, 2015, 11, 8613-8620.	2.7	3
11	Catalyst design for methane steam reforming. Applied Catalysis A: General, 2014, 479, 87-102.	4.3	39
12	Dispersion polymerization of styrene in CO2-expanded ethanol. Polymer, 2013, 54, 6689-6694.	3.8	7
13	Basket Impeller Extractive Reactor Column for Biodiesel Production: An Experimental Study. Industrial & Engineering Chemistry Research, 2013, 52, 15298-15310.	3.7	2
14	Evaluating the impact of recycled fiber content on effluent recycling in newsprint manufacture. Chemosphere, 2013, 92, 1513-1519.	8.2	8
15	Exploiting the homogeneous expansion limit of CO2-expanded media for the synthesis of polymeric nanoparticles. Journal of Supercritical Fluids, 2013, 78, 89-94.	3.2	4
16	Size-Tunable Nanoparticle Synthesis by RAFT Polymerization in CO2-Induced Miniemulsions. Macromolecules, 2012, 45, 1803-1810.	4.8	20
17	Radical polymerization of CO ₂ â€induced emulsions: A novel route to polymeric nanoparticles. Journal of Polymer Science Part A, 2011, 49, 4307-4311.	2.3	8
18	Nitroxideâ€mediated radical polymerization of carbon dioxideâ€expanded methyl methacrylate. Journal of Polymer Science Part A, 2010, 48, 5636-5641.	2.3	10

#	Article	IF	CITATIONS
19	Design of CeyCoxTi (1-x) O $3+\hat{l}$ Perovskite for Photocatalysis: A Statistical Study. Journal of Advanced Oxidation Technologies, 2009, 12, .	0.5	O
20	Solid–liquid equilibria of multicomponent lipid mixtures under CO ₂ pressure: Measurement and thermodynamic modeling. AICHE Journal, 2008, 54, 2487-2494.	3.6	13
21	Alumina-supported cobalt-molybdenum catalyst for slurry phase Fischer–Tropsch synthesis. Catalysis Today, 2008, 131, 255-261.	4.4	35
22	Kinetic modelling of the catalytic hydrogenation of CO2-expanded \hat{l}_{\pm} -methylstyrene. Journal of Supercritical Fluids, 2008, 46, 40-46.	3.2	12
23	Ion exchange resins for the treatment of cyanidation tailings. Minerals Engineering, 2008, 21, 683-690.	4.3	7
24	Molecular Weight Evolution in the Catalytic Chain Transfer Polymerization of CO2-Expanded Methyl Methacrylate. Macromolecules, 2008, 41, 5141-5147.	4.8	8
25	Solubility of Carbon Dioxide in Butyl Methacrylate at Temperatures of (323 and 333) K. Journal of Chemical & C	1.9	8
26	Effect of Bulk Viscosity on the Catalytic Chain Transfer Polymerization of CO2-Expanded Butyl Methacrylate and Styrene. Macromolecules, 2006, 39, 8669-8673.	4.8	9
27	Catalytic chain transfer polymerisation of CO2-expanded methyl methacrylate. Journal of Supercritical Fluids, 2006, 38, 420-426.	3.2	18
28	Selective elution of the gold cyanide complex from anion exchange resin using mixed solvents. Minerals Engineering, 2006, 19, 896-903.	4.3	18
29	Precipitation of potassium aurocyanide from dipolar aprotic solvents using a supercritical antisolvent. Journal of Supercritical Fluids, 2005, 33, 69-76.	3.2	5
30	Reversible addition-fragmentation chain transfer polymerization of methyl methacrylate in suspension. Journal of Polymer Science Part A, 2005, 43, 2001-2012.	2.3	37
31	Vaporâ^'Liquid Equilibria of Carbon Dioxide + Methyl Methacrylate at 308, 313, 323, and 333 K. Industrial & Engineering Chemistry Research, 2005, 44, 1021-1026.	3.7	17
32	lon-Exchange Equilibria for [Au(CN)2]-/Cl-, [Au(CN)2]-/SCN-, and SCN-/Cl-in Acetone + Water Mixtures at 303 K. Journal of Chemical & Engineering Data, 2005, 50, 1448-1453.	1.9	1
33	Ion-Exchange Equilibria for [Au(CN)2]-/Cl- and [Au(CN)2]-/SCN- on Purolite A500 in Mixed Solvents at 303 K. Industrial & Solvents at 4, 7496-7504.	3.7	8
34	Precipitation of potassium aurocyanide from dipolar aprotic solvents using a supercritical antisolvent. Journal of Supercritical Fluids, 2005, 33, 69-76.	3.2	2
35	Solubility of carbon dioxide in dimethylsulfoxide and N-methyl-2-pyrrolidone at elevated pressure. Journal of Supercritical Fluids, 2004, 31, 227-234.	3.2	69
36	Ion-Exchange Equilibria for Au(CN)2-/Cl-, Au(CN)2-/SCN-, and SCN-/Cl-in Aqueous Solution at 303 K. Journal of Chemical & Engineering Data, 2004, 49, 1279-1284.	1.9	3

#	Article	IF	CITATION
37	Substituent effects in the catalytic chain transfer polymerization of 2-hydroxyethyl methacrylate. European Polymer Journal, 2003, 39, 429-435.	5.4	16
38	Three-phase catalytic hydrogenation of \hat{l}_{\pm} -methylstyrene in supercritical carbon dioxide. Journal of Supercritical Fluids, 2003, 25, 155-164.	3.2	33
39	Volumetric expansion and vapour–liquid equilibria of α-methylstyrene and cumene with carbon dioxide at elevated pressure. Journal of Supercritical Fluids, 2003, 25, 99-107.	3.2	18
40	Solubility of Hydrogen in α-Methylstyrene and Cumene at Elevated Pressure. Journal of Chemical & Engineering Data, 2002, 47, 474-477.	1.9	10
41	Kinetics of the Autoxidation of Sodium Dodecyl Sulfate Catalyzed by Alumina-Supported Coâ^'Zn Composite. Industrial & Dodecyl Sulfate Catalyzed by Alumina-Supported Coâ^'Zn Composite. Industrial & Dodecyl Sulfate Catalyzed by Alumina-Supported Coâ^'Zn Composite. Industrial & Dodecyl Sulfate Catalyzed by Alumina-Supported Coâ^'Zn Composite. Industrial & Dodecyl Sulfate Catalyzed by Alumina-Supported Coâ^'Zn Composite. Industrial & Dodecyl Sulfate Catalyzed by Alumina-Supported Coâ^'Zn Composite. Industrial & Dodecyl Sulfate Catalyzed by Alumina-Supported Coâ^'Zn Composite. Industrial & Dodecyl Sulfate Catalyzed by Alumina-Supported Coâ^'Zn Composite. Industrial & Dodecyl Sulfate Catalyzed by Alumina-Supported Coâ^'Zn Composite. Industrial & Dodecyl Sulfate Catalyzed by Alumina-Supported Coâ^'Zn Composite. Industrial & Dodecyl Sulfate Catalyzed by Alumina-Supported Coâ^'Zn Composite. Industrial & Dodecyl Sulfate Catalyzed by Alumina-Supported Coâ^'Zn Composite. Industrial & Dodecyl Sulfate Catalyzed by Alumina-Supported Coâ^'Zn Composite. Industrial & Dodecyl Sulfate Catalyzed by Alumina-Supported Coâ^'Zn Composite Catalyzed by Alumina-Supported Coâ^'Zn Catalyzed by Alumina-Supported by Alumina-Supported Coâ^'Zn Catalyzed by Alumina-Supported by Alumina-Supported by Alumina-Supported by Alumina-Supported by Alumina-Supported by Alumina-Supported by Alumina-Suppor	3.7	3
42	Solubilities of solid mixtures in supercritical carbon dioxide: a review. Journal of Supercritical Fluids, 2000, 17, 111-134.	3.2	173
43	Critical Properties for Binary Mixtures of Ethane Containing Low Concentrations of n-Alkane. Journal of Chemical & Description of Chemical & Descrip	1.9	20
44	Asymmetric catalytic hydrogenation in CO2 expanded methanolâ€"an application of gas anti-solvent reactions (GASR)., 2000, , 173-181.		19
45	Catalytic Chain Transfer Polymerization of Methyl Methacrylate in Supercritical Carbon Dioxide:Â Evidence for a Diffusion-Controlled Transfer Process. Macromolecules, 1999, 32, 5514-5518.	4.8	31
46	Steric Effects and Preferential Interactions in Supercritical Carbon Dioxide. Industrial & Engineering Chemistry Research, 1998, 37, 4190-4197.	3.7	26
47	Solubilities of Mixed Hydroxybenzoic Acid Isomers in Supercritical Carbon Dioxide. Journal of Chemical & Chemi	1.9	44
48	Influence of Matrix Composition on the Solubility of Hydroxybenzoic Acid Isomers in Supercritical Carbon Dioxide. Industrial & Engineering Chemistry Research, 1996, 35, 4686-4699.	3.7	63