Xiao-Dong Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7948379/publications.pdf

Version: 2024-02-01

1			304602	477173
	37	2,683	22	29
	papers	citations	h-index	g-index
	37	37	37	3608
	37	37	37	3000
	all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Extracellular Matrix Made by Bone Marrow Cells Facilitates Expansion of Marrow-Derived Mesenchymal Progenitor Cells and Prevents Their Differentiation Into Osteoblasts. Journal of Bone and Mineral Research, 2007, 22, 1943-1956.	3.1	319
2	The small leucineâ€rich proteoglycan biglycan modulates BMPâ€4â€induced osteoblast differentiation. FASEB Journal, 2004, 18, 948-958.	0.2	255
3	A crucial role of caspase-3 in osteogenic differentiation of bone marrow stromal stem cells. Journal of Clinical Investigation, 2004, 114, 1704-1713.	3.9	221
4	Extracellular Matrix Proteoglycans Control the Fate of Bone Marrow Stromal Cells. Journal of Biological Chemistry, 2005, 280, 30481-30489.	1.6	220
5	Rescuing replication and osteogenesis of aged mesenchymal stem cells by exposure to a young extracellular matrix. FASEB Journal, 2011, 25, 1474-1485.	0.2	181
6	Reconstitution of Marrow-Derived Extracellular Matrix Ex Vivo: A Robust Culture System for Expanding Large-Scale Highly Functional Human Mesenchymal Stem Cells. Stem Cells and Development, 2010, 19, 1095-1107.	1.1	180
7	Biglycan knockout mice: New models for musculoskeletal diseases. Glycoconjugate Journal, 2002, 19, 257-262.	1.4	151
8	Age-Related Osteoporosis in Biglycan-Deficient Mice Is Related to Defects in Bone Marrow Stromal Cells. Journal of Bone and Mineral Research, 2002, 17, 331-340.	3.1	134
9	Estrogens attenuate oxidative stress and the differentiation and apoptosis of osteoblasts by DNA-binding-independent actions of the ERα. Journal of Bone and Mineral Research, 2010, 25, 769-781.	3.1	99
10	One size does not fit all: developing a cell-specific niche for in vitro study of cell behavior. Matrix Biology, 2016, 52-54, 426-441.	1.5	85
11	Restoring the quantity and quality of elderly human mesenchymal stem cells for autologous cell-based therapies. Stem Cell Research and Therapy, 2017, 8, 239.	2.4	85
12	Extracellular matrix provides an optimal niche for the maintenance and propagation of mesenchymal stem cells. Birth Defects Research Part C: Embryo Today Reviews, 2010, 90, 45-54.	3.6	82
13	Characterization of bone marrow derived mesenchymal stem cells in suspension. Stem Cell Research and Therapy, 2012, 3, 40.	2.4	77
14	Thy-1 Antigen Expression by Cells in the Osteoblast Lineage. Journal of Bone and Mineral Research, 1999, 14, 362-375.	3.1	72
15	Native extracellular matrix preserves mesenchymal stem cell "stemness―and differentiation potential under serum-free culture conditions. Stem Cell Research and Therapy, 2015, 6, 235.	2.4	69
16	Biomimetic Collagen–Hydroxyapatite Composite Fabricated via a Novel Perfusion-Flow Mineralization Technique. Tissue Engineering - Part C: Methods, 2013, 19, 487-496.	1.1	66
17	Bmp2 gene in osteoblasts of periosteum and trabecular bone links bone formation to vascularization and mesenchymal stem cells. Journal of Cell Science, 2013, 126, 4085-98.	1.2	63
18	The Urokinase Plasminogen Activator Receptor–Associated Protein/Endo180 Is Coexpressed with Its Interaction Partners Urokinase Plasminogen Activator Receptor and Matrix Metalloprotease-13 during Osteogenesis. Laboratory Investigation, 2001, 81, 1403-1414.	1.7	62

#	Article	IF	CITATIONS
19	Stromal-Cell-Derived Extracellular Matrix Promotes the Proliferation and Retains the Osteogenic Differentiation Capacity of Mesenchymal Stem Cells on Three-Dimensional Scaffolds. Tissue Engineering - Part C: Methods, 2015, 21, 171-181.	1.1	59
20	Biglycan Deficiency Interferes With Ovariectomy-Induced Bone Loss. Journal of Bone and Mineral Research, 2003, 18, 2152-2158.	3.1	46
21	The mechanical phenotype of biglycan-deficient mice is bone- and gender-specific. Bone, 2006, 39, 106-116.	1.4	44
22	Silk Fibroin Scaffolds Promote Formation of the <i>Ex Vivo</i> Niche for Salivary Gland Epithelial Cell Growth, Matrix Formation, and Retention of Differentiated Function. Tissue Engineering - Part A, 2015, 21, 1611-1620.	1.6	24
23	Umbilical cord blood-derived non-hematopoietic stem cells retrieved and expanded on bone marrow-derived extracellular matrix display pluripotent characteristics. Stem Cell Research and Therapy, 2016, 7, 176.	2.4	22
24	Native extracellular matrix, synthesized ex vivo by bone marrow or adipose stromal cells, faithfully directs mesenchymal stem cell differentiation. Matrix Biology Plus, 2020, 8, 100044.	1.9	21
25	Dissection of the sets of genes that control the behavior of biglycan-deficient pre-osteoblasts using oligonucleotide microarrays. Bone, 2005, 37, 192-203.	1.4	14
26	Culture on a native bone marrowâ€derived extracellular matrix restores the pancreatic islet basement membrane, preserves islet function, and attenuates islet immunogenicity. FASEB Journal, 2020, 34, 8044-8056.	0.2	9
27	Matrix-bound Cyr61/CCN1 is required to retain the properties of the bone marrow mesenchymal stem cell niche but is depleted with aging. Matrix Biology, 2022, 111, 108-132.	1.5	9
28	Organ-specific extracellular matrix directs trans-differentiation of mesenchymal stem cells and formation of salivary gland-like organoids in vivo. Stem Cell Research and Therapy, 2022, 13, .	2.4	5
29	Maintenance and Culture of MSCs. , 2019, , 39-61.		4
30	Stem Cell–Based Restoration of Salivary Gland Function. , 2019, , 345-366.		2
31	Oral and Craniofacial Stem Cells: An Untapped Source for Neural Tissue Regeneration. Tissue Engineering - Part A, 2020, 26, 935-938.	1.6	2
32	Exercise Can Reverse the Phenotype of Biglycan Deficient Mice. , 2003, , .		1
33	Single-Walled Carbon Nanotube Scaffolds Promote Stem Cell Differentiation into Bone Forming Cells. Materials Research Society Symposia Proceedings, 2007, 1018, 1.	0.1	0
34	What Can We Learn From This Book?., 2019,, 3-13.		0
35	Use of MSCs in Antiaging Strategies. , 2019, , 443-461.		0
36	The role and mechanisms of bone morphogenetic protein 4 and 2 (BMP-4 and BMP-2) in postnatal skeletal development., 2008, , 179-197.		0

3

XIAO-DONG CHEN

#	Article	IF	CITATIONS
37	In vitro effect of an oral spray and mouthrinses on dual species cariogenic bacteria biofilm American Journal of Dentistry, 2022, 35, 103-108.	0.1	O