List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7948362/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A stable solution-processed polymer semiconductor with record high-mobility for printed transistors. Scientific Reports, 2012, 2, 754.	1.6	800
2	Highly Ï€â€Extended Copolymers with Diketopyrrolopyrrole Moieties for Highâ€Performance Fieldâ€Effect Transistors. Advanced Materials, 2012, 24, 4618-4622.	11.1	707
3	25th Anniversary Article: Recent Advances in nâ€Type and Ambipolar Organic Fieldâ€Effect Transistors. Advanced Materials, 2013, 25, 5372-5391.	11.1	608
4	Functional Organic Fieldâ€Effect Transistors. Advanced Materials, 2010, 22, 4427-4447.	11.1	526
5	Uniform hexagonal graphene flakes and films grown on liquid copper surface. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 7992-7996.	3.3	417
6	One-Pot Self-Assembled Three-Dimensional TiO ₂ -Graphene Hydrogel with Improved Adsorption Capacities and Photocatalytic and Electrochemical Activities. ACS Applied Materials & Interfaces, 2013, 5, 2227-2233.	4.0	383
7	Patterned Graphene as Source/Drain Electrodes for Bottomâ€Contact Organic Fieldâ€Effect Transistors. Advanced Materials, 2008, 20, 3289-3293.	11.1	373
8	Oxygen-Aided Synthesis of Polycrystalline Graphene on Silicon Dioxide Substrates. Journal of the American Chemical Society, 2011, 133, 17548-17551.	6.6	315
9	Insight into High-Performance Conjugated Polymers for Organic Field-Effect Transistors. CheM, 2018, 4, 2748-2785.	5.8	313
10	A Ferroelectric/Electrochemical Modulated Organic Synapse for Ultraflexible, Artificial Visualâ€Perception System. Advanced Materials, 2018, 30, e1803961.	11.1	292
11	Low Temperature Growth of Highly Nitrogen-Doped Single Crystal Graphene Arrays by Chemical Vapor Deposition. Journal of the American Chemical Society, 2012, 134, 11060-11063.	6.6	287
12	Diketopyrrolopyrrole-Containing Quinoidal Small Molecules for High-Performance, Air-Stable, and Solution-Processable n-Channel Organic Field-Effect Transistors. Journal of the American Chemical Society, 2012, 134, 4084-4087.	6.6	280
13	Air-Stable and Solution-Processable Perovskite Photodetectors for Solar-Blind UV and Visible Light. Journal of Physical Chemistry Letters, 2015, 6, 535-539.	2.1	265
14	Experimental Techniques for the Fabrication and Characterization of Organic Thin Films for Field-Effect Transistors. Chemical Reviews, 2011, 111, 3358-3406.	23.0	241
15	Chemical Pathways Connecting Lead(II) Iodide and Perovskite via Polymeric Plumbate(II) Fiber. Journal of the American Chemical Society, 2015, 137, 15907-15914.	6.6	223
16	Advances in flexible organic field-effect transistors and their applications for flexible electronics. Npj Flexible Electronics, 2022, 6, .	5.1	194
17	Exploration of Near-Infrared Organic Photodetectors. Chemistry of Materials, 2019, 31, 6359-6379.	3.2	189
18	Highâ€Performance, Air‣table Fieldâ€Effect Transistors Based on Heteroatom‣ubstituted Naphthalenediimideâ€Benzothiadiazole Copolymers Exhibiting Ultrahigh Electron Mobility up to 8.5 cm V ^{â^'1} s ^{â^'1} . Advanced Materials, 2017, 29, 1602410.	11.1	187

#	Article	IF	CITATIONS
19	Single-Walled Carbon Nanotube Film as Electrode in Indium-Free Planar Heterojunction Perovskite Solar Cells: Investigation of Electron-Blocking Layers and Dopants. Nano Letters, 2015, 15, 6665-6671.	4.5	179
20	Multibit Storage of Organic Thinâ€Film Fieldâ€Effect Transistors. Advanced Materials, 2009, 21, 1954-1959.	11.1	178
21	Equiangular Hexagonâ€Shapeâ€Controlled Synthesis of Graphene on Copper Surface. Advanced Materials, 2011, 23, 3522-3525.	11.1	173
22	Allâ€Solutionâ€Processed, Highâ€Performance nâ€Channel Organic Transistors and Circuits: Toward Lowâ€Cost Ambient Electronics. Advanced Materials, 2011, 23, 2448-2453.	11.1	172
23	Polymer Stabilization of Lead(II) Perovskite Cubic Nanocrystals for Semitransparent Solar Cells. Advanced Energy Materials, 2016, 6, 1502317.	10.2	168
24	Enhancement in the efficiency of an organic–inorganic hybrid solar cell with a doped P3HT hole-transporting layer on a void-free perovskite active layer. Journal of Materials Chemistry A, 2014, 2, 13827-13830.	5.2	163
25	Inkjet Printing Highâ€Resolution, Largeâ€Area Graphene Patterns by Coffeeâ€Ring Lithography. Advanced Materials, 2012, 24, 436-440.	11.1	154
26	Self-organized graphene crystal patterns. NPG Asia Materials, 2013, 5, e36-e36.	3.8	153
27	Reduction of graphene oxide to highly conductive graphene by Lawesson's reagent and its electrical applications. Journal of Materials Chemistry C, 2013, 1, 3104.	2.7	150
28	Porphyrinâ^'Dithienothiophene Ï€-Conjugated Copolymers: Synthesis and Their Applications in Field-Effect Transistors and Solar Cells. Macromolecules, 2008, 41, 6895-6902.	2.2	144
29	Fractal Etching of Graphene. Journal of the American Chemical Society, 2013, 135, 6431-6434.	6.6	140
30	When Flexible Organic Fieldâ€Effect Transistors Meet Biomimetics: A Prospective View of the Internet of Things. Advanced Materials, 2020, 32, e1901493.	11.1	136
31	Graphene-coated silica as a highly efficient sorbent for residual organophosphorus pesticides in water. Journal of Materials Chemistry A, 2013, 1, 1875-1884.	5.2	133
32	Nearâ€Equilibrium Chemical Vapor Deposition of Highâ€Quality Singleâ€Crystal Graphene Directly on Various Dielectric Substrates. Advanced Materials, 2014, 26, 1348-1353.	11.1	132
33	Production of Graphite Chloride and Bromide Using Microwave Sparks. Scientific Reports, 2012, 2, 662.	1.6	125
34	Synthesis of large-area, few-layer graphene on iron foil by chemical vapor deposition. Nano Research, 2011, 4, 1208-1214.	5.8	120
35	Highâ€Performance Phototransistors Based on Organic Microribbons Prepared by a Solution Selfâ€Assembly Process. Advanced Functional Materials, 2010, 20, 1019-1024.	7.8	119
36	Naphthalenediimide-Based Copolymers Incorporating Vinyl-Linkages for High-Performance Ambipolar Field-Effect Transistors and Complementary-Like Inverters under Air. Chemistry of Materials, 2013, 25, 3589-3596.	3.2	119

#	Article	IF	CITATIONS
37	Isoindigoâ€Based Polymers with Small Effective Masses for Highâ€Mobility Ambipolar Fieldâ€Effect Transistors. Advanced Materials, 2017, 29, 1702115.	11.1	115
38	Regioregular Bis-Pyridal[2,1,3]thiadiazole-Based Semiconducting Polymer for High-Performance Ambipolar Transistors. Journal of the American Chemical Society, 2017, 139, 17735-17738.	6.6	115
39	Twoâ€Stage Metalâ€Catalystâ€Free Growth of Highâ€Quality Polycrystalline Graphene Films on Silicon Nitride Substrates. Advanced Materials, 2013, 25, 992-997.	11.1	112
40	Local Time-Dependent Charging in a Perovskite Solar Cell. ACS Applied Materials & Interfaces, 2016, 8, 19402-19409.	4.0	109
41	Flexible, Lowâ€Voltage and Highâ€Performance Polymer Thinâ€Film Transistors and Their Application in Photo/Thermal Detectors. Advanced Materials, 2014, 26, 3631-3636.	11.1	107
42	Substrateâ€Free Ultraâ€Flexible Organic Fieldâ€Effect Transistors and Fiveâ€Stage Ring Oscillators. Advanced Materials, 2013, 25, 5455-5460.	11.1	106
43	Design and effective synthesis methods for high-performance polymer semiconductors in organic field-effect transistors. Materials Chemistry Frontiers, 2017, 1, 2423-2456.	3.2	106
44	Production of Highâ€Quality Carbon Nanoscrolls with Microwave Spark Assistance in Liquid Nitrogen. Advanced Materials, 2011, 23, 2460-2463.	11.1	104
45	Asymmetrical Small Molecule Acceptor Enabling Nonfullerene Polymer Solar Cell with Fill Factor Approaching 79%. ACS Energy Letters, 2018, 3, 1760-1768.	8.8	102
46	Low bandgap Ï€â€conjugated copolymers based on fused thiophenes and benzothiadiazole: Synthesis and structureâ€property relationship study. Journal of Polymer Science Part A, 2009, 47, 5498-5508.	2.5	100
47	Bisâ€Diketopyrrolopyrrole Moiety as a Promising Building Block to Enable Balanced Ambipolar Polymers for Flexible Transistors. Advanced Materials, 2017, 29, 1606162.	11.1	99
48	A Retinaâ€Like Dual Band Organic Photosensor Array for Filterâ€Free Nearâ€Infraredâ€toâ€Memory Operations. Advanced Materials, 2017, 29, 1701772.	11.1	95
49	Electrical Assembly and Reduction of Graphene Oxide in a Single Solution Step for Use in Flexible Sensors. Advanced Materials, 2011, 23, 4626-4630.	11.1	93
50	Large-area, flexible imaging arrays constructed by light-charge organic memories. Scientific Reports, 2013, 3, 1080.	1.6	92
51	Highâ€Performance Organic Fieldâ€Effect Transistors with Lowâ€Cost Copper Electrodes. Advanced Materials, 2008, 20, 1286-1290.	11.1	91
52	Improvements in Stability and Performance of <i>N,N′</i> â€Dialkyl Perylene Diimideâ€Based nâ€Type Thinâ€F Transistors. Advanced Materials, 2009, 21, 1631-1635.	ilm 11.1	90
53	Controllable Chemical Vapor Deposition Growth of Few Layer Graphene for Electronic Devices. Accounts of Chemical Research, 2013, 46, 106-115.	7.6	88
54	Sulfamic Acid-Catalyzed Lead Perovskite Formation for Solar Cell Fabrication on Glass or Plastic Substrates. Journal of the American Chemical Society, 2016, 138, 5410-5416.	6.6	86

#	Article	IF	CITATIONS
55	Diketopyrrolopyrrole-Based π-Conjugated Copolymer Containing β-Unsubstituted Quintetthiophene Unit: A Promising Material Exhibiting High Hole-Mobility for Organic Thin-Film Transistors. Chemistry of Materials, 2012, 24, 4350-4356.	3.2	85
56	Inkjet Printing Shortâ€Channel Polymer Transistors with Highâ€Performance and Ultrahigh Photoresponsivity. Advanced Materials, 2014, 26, 4683-4689.	11.1	82
57	Highâ€Performance Organic Transistor Memory Elements with Steep Flanks of Hysteresis. Advanced Functional Materials, 2008, 18, 2593-2601.	7.8	81
58	New Donor–Acceptor–Donor Molecules with Pechmann Dye as the Core Moiety for Solution-Processed Good-Performance Organic Field-Effect Transistors. Chemistry of Materials, 2013, 25, 471-478.	3.2	81
59	Active Morphology Control for Concomitant Long Distance Spin Transport and Photoresponse in a Single Organic Device. Advanced Materials, 2016, 28, 2609-2615.	11.1	77
60	Citric Acid Modulated Growth of Oriented Lead Perovskite Crystals for Efficient Solar Cells. Journal of the American Chemical Society, 2017, 139, 9598-9604.	6.6	77
61	Ultrasensitive and selective sensing of heavy metal ions with modified graphene. Chemical Communications, 2013, 49, 6492.	2.2	76
62	Investigation of Electrode Electrochemical Reactions in CH ₃ NH ₃ PbBr ₃ Perovskite Singleâ€Crystal Fieldâ€Effect Transistors. Advanced Materials, 2019, 31, e1902618.	11.1	74
63	Design and synthesis of high performance π-conjugated materials through antiaromaticity and quinoid strategy for organic field-effect transistors. Materials Science and Engineering Reports, 2019, 136, 13-26.	14.8	72
64	Fast Deposition of Aligning Edgeâ€On Polymers for Highâ€Mobility Ambipolar Transistors. Advanced Materials, 2019, 31, e1805761.	11.1	70
65	New tetrathiafulvalene fused-naphthalene diimides for solution-processible and air-stable p-type and ambipolar organic semiconductors. Chemical Science, 2012, 3, 2530.	3.7	67
66	A Flexible Acetylcholinesterase-Modified Graphene for Chiral Pesticide Sensor. Journal of the American Chemical Society, 2019, 141, 14643-14649.	6.6	67
67	Dualâ€Mode Learning of Ambipolar Synaptic Phototransistor Based on 2D Perovskite/Organic Heterojunction for Flexible Color Recognizable Visual System. Small, 2021, 17, e2102820.	5.2	66
68	Anthra[2,3- <i>b</i>]benzo[<i>d</i>]thiophene: An Air-Stable Asymmetric Organic Semiconductor with High Mobility at Room Temperature. Chemistry of Materials, 2008, 20, 4188-4190.	3.2	65
69	Design, Synthesis, and Properties of Asymmetrical Heteroacene and Its Application in Organic Electronics. Journal of Physical Chemistry C, 2010, 114, 10565-10571.	1.5	64
70	High quality graphene with large flakes exfoliated by oleyl amine. Chemical Communications, 2010, 46, 5728.	2.2	63
71	General Route toward Patterning of Graphene Oxide by a Combination of Wettability Modulation and Spin-Coating. ACS Nano, 2010, 4, 5749-5754.	7.3	62
72	An expedient synthesis of fused heteroacenes bearing a pyrrolo[3,2-b]pyrrole core. Chemical Communications, 2012, 48, 12225.	2.2	62

YUNLONG GUO

#	Article	IF	CITATIONS
73	Trifluoromethyltriphenodioxazine: Air-Stable and High-Performance n-Type Semiconductor. Organic Letters, 2008, 10, 3025-3028.	2.4	61
74	Chemical Formation and Multiple Applications of Organic–Inorganic Hybrid Perovskite Materials. Journal of the American Chemical Society, 2019, 141, 1406-1414.	6.6	61
75	Interfacial Heterogeneity of Surface Energy in Organic Fieldâ€Effect Transistors. Advanced Materials, 2011, 23, 1009-1014.	11.1	60
76	Singleâ€Crystal Microribbons of an Indolo[3,2â€ <i>b</i>]carbazole Derivative by Solutionâ€Phase Selfâ€Assembly with Novel Mechanical, Electrical, and Optical Properties. Advanced Materials, 2008, 20, 4835-4839.	11.1	58
77	Constructing Stable Chromenoquinoline-Based Covalent Organic Frameworks via Intramolecular Povarov Reaction. Journal of the American Chemical Society, 2022, 144, 2488-2494.	6.6	57
78	Morphology Optimization for the Fabrication of High Mobility Thinâ€Film Transistors. Advanced Materials, 2011, 23, 3128-3133.	11.1	55
79	A New Carbazoleâ€Constructed Hyperbranched Polymer: Convenient Oneâ€Pot Synthesis, Holeâ€Transporting Ability, and Fieldâ€Effect Transistor Properties. Advanced Functional Materials, 2009, 19, 2677-2683.	7.8	54
80	Solventâ€Assisted Reâ€annealing of Polymer Films for Solutionâ€Processable Organic Fieldâ€Effect Transistors. Advanced Materials, 2010, 22, 1273-1277.	11.1	54
81	One-Pot Microbial Method to Synthesize Dual-Doped Graphene and Its Use as High-Performance Electrocatalyst. Scientific Reports, 2013, 3, 3499.	1.6	53
82	Acceptor Modulation Strategies for Improving the Electron Transport in Highâ€Performance Organic Fieldâ€Effect Transistors. Advanced Materials, 2022, 34, e2104325.	11.1	53
83	Synthesis and properties of the anti and syn isomers of dibenzothieno[b,d]pyrrole. Chemical Communications, 2008, , 6227.	2.2	52
84	Dibenzoannelated Tetrathienoacene: Synthesis, Characterization, and Applications in Organic Field-Effect Transistors. Organic Letters, 2012, 14, 3300-3303.	2.4	52
85	Novel Functionalized Conjugated Polythiophene with Oxetane Substituents: Synthesis, Optical, Electrochemical, and Field-Effect Properties. Macromolecules, 2009, 42, 3222-3226.	2.2	51
86	A diketopyrrolopyrrole–thiazolothiazole copolymer for high performance organic field-effect transistors. Chemical Communications, 2013, 49, 1998.	2.2	49
87	Gram‣cale Synthesis of Graphene Sheets by a Catalytic Arcâ€Discharge Method. Small, 2013, 9, 1330-1335.	5.2	49
88	Field dependent and high light sensitive organic phototransistors based on linear asymmetric organic semiconductor. Applied Physics Letters, 2009, 94, 143303.	1.5	48
89	Dithiazole-fused naphthalene diimides toward new n-type semiconductors. Journal of Materials Chemistry C, 2013, 1, 1087-1092.	2.7	48
90	Extended π-Conjugated Molecules Derived from Naphthalene Diimides toward Organic Emissive and Semiconducting Materials. Journal of Organic Chemistry, 2013, 78, 2926-2934.	1.7	48

#	Article	IF	CITATIONS
91	Topâ€Gate Organic Thinâ€Film Transistors Constructed by a General Lamination Approach. Advanced Materials, 2010, 22, 3537-3541.	11.1	47
92	Selfâ€Aligned Singleâ€Crystal Graphene Grains. Advanced Functional Materials, 2014, 24, 1664-1670.	7.8	47
93	Highâ€Mobility Organic Lightâ€Emitting Semiconductors and Its Optoelectronic Devices. Small Structures, 2021, 2, 2000083.	6.9	47
94	n-Type doping for efficient polymeric electron-transporting layers in perovskite solar cells. Journal of Materials Chemistry A, 2016, 4, 18852-18856.	5.2	44
95	Solution-Processed Organic Field-Effect Transistors Based on Polythiophene Derivatives with Conjugated Bridges as Linking Chains. Chemistry of Materials, 2007, 19, 3361-3363.	3.2	42
96	Efficient modification of Cu electrode with nanometer-sized copper tetracyanoquinodimethane for high performance organic field-effect transistors. Physical Chemistry Chemical Physics, 2008, 10, 2302.	1.3	40
97	Fluorographene nanosheets with broad solvent dispersibility and their applications as a modified layer in organic field-effect transistors. Physical Chemistry Chemical Physics, 2013, 15, 20992.	1.3	40
98	Application of organic field-effect transistors in memory. Materials Chemistry Frontiers, 2020, 4, 2845-2862.	3.2	40
99	Intrinsically flexible displays: key materials and devices. National Science Review, 2022, 9, .	4.6	40
100	New air-stable solution-processed organic n-type semiconductors based on sulfur-rich core-expanded naphthalene diimides. Journal of Materials Chemistry, 2011, 21, 18042.	6.7	39
101	Engineering of Amorphous Polymeric Insulators for Organic Fieldâ€Effect Transistors. Advanced Electronic Materials, 2017, 3, 1700157.	2.6	38
102	Low Band Gap Donor–Acceptor Conjugated Polymers with Indanone-Condensed Thiadiazolo[3,4- <i>g</i>]quinoxaline Acceptors. Macromolecules, 2019, 52, 6149-6159.	2.2	38
103	Ultralowâ€Power and Multisensory Artificial Synapse Based on Electrolyteâ€Gated Vertical Organic Transistors. Advanced Functional Materials, 2022, 32, .	7.8	38
104	Synthesis, self-assembly, and solution-processed nanoribbon field-effect transistor of a fused-nine-ring thienoacene. Chemical Communications, 2010, 46, 2841.	2.2	35
105	Effect of dielectric layers on device stability of pentacene-based field-effect transistors. Physical Chemistry Chemical Physics, 2009, 11, 7268.	1.3	34
106	Three-Dimensionally Homoconjugated Carbon-Bridged Oligophenylenevinylene for Perovskite Solar Cells. Journal of the American Chemical Society, 2016, 138, 10897-10904.	6.6	34
107	Ultrahighâ€Performance Optoelectronic Skin Based on Intrinsically Stretchable Perovskiteâ€Polymer Heterojunction Transistors. Advanced Materials, 2022, 34, e2107304. 	11.1	34
108	Alignment of linear polymeric grains for highly stable N-type thin-film transistors. CheM, 2021, 7, 1258-1270.	5.8	33

YUNLONG GUO

#	Article	IF	CITATIONS
109	Fused-seven-ring anthracene derivative with two sulfur bridges for high performance red organic light-emitting diodes. Chemical Communications, 2010, 46, 8573.	2.2	32
110	Triple Acceptors in a Polymeric Architecture for Balanced Ambipolar Transistors and Highâ€Gain Inverters. Advanced Materials, 2018, 30, e1801951.	11.1	32
111	Improving the Electronic Transporting Property for Flexible Field-Effect Transistors with Naphthalene Diimide-Based Conjugated Polymer through Branching/Linear Side-Chain Engineering Strategy. ACS Applied Materials & Interfaces, 2019, 11, 15837-15844.	4.0	32
112	Lowering programmed voltage of organic memory transistors based on polymer gate electrets through heterojunction fabrication. Organic Electronics, 2012, 13, 1969-1974.	1.4	31
113	Multilayer Graphene oated Atomic Force Microscopy Tips for Molecular Junctions. Advanced Materials, 2012, 24, 3482-3485.	11.1	31
114	Synthesis and Characterization of Novel Semiconductors Based on Thieno[3,2- <i>b</i>][1]benzothiophene Cores and Their Applications in the Organic Thin-Film Transistors. Journal of Physical Chemistry C, 2011, 115, 23984-23991.	1.5	30
115	Solution-processed core-extended naphthalene diimides toward organic n-type and ambipolar semiconductors. Journal of Materials Chemistry C, 2013, 1, 2688.	2.7	29
116	"Regioselective Deposition―Method to Pattern Silver Electrodes Facilely and Efficiently with High Resolution: Towards Allâ€5olutionâ€Processed, Highâ€Performance, Bottomâ€Contacted, Flexible, Polymerâ€Based Electronics. Advanced Functional Materials, 2014, 24, 3783-3789.	7.8	29
117	Highâ€Performance Ambipolar Polymers Based on Electronâ€Withdrawing Group Substituted Bayâ€Annulated Indigo. Advanced Functional Materials, 2019, 29, 1804839.	7.8	29
118	Synthesis, Structures, and Properties of Thieno[3,2- <i>b</i>]thiophene and Dithiophene Bridged Isoindigo Derivatives and Their Organic Field-effect Transistors Performance. Journal of Physical Chemistry C, 2012, 116, 22655-22662.	1.5	28
119	Asymmetrical Fluorene[2,3â€ <i>b</i>]benzo[<i>d</i>]thiophene Derivatives: Synthesis, Solidâ€State Structures, and Application in Solutionâ€Processable Organic Lightâ€Emitting Diodes. Chemistry - A European Journal, 2009, 15, 8275-8282.	1.7	27
120	Copolymers of Bis-Diketopyrrolopyrrole and Benzothiadiazole Derivatives for High-Performance Ambipolar Field-Effect Transistors on Flexible Substrates. ACS Applied Materials & Interfaces, 2018, 10, 25858-25865.	4.0	27
121	Perovskite photodetectors and their application in artificial photonic synapses. Chemical Communications, 2021, 57, 11429-11442.	2.2	27
122	Design of All-Fused-Ring Nonfullerene Acceptor for Highly Sensitive Self-Powered Near-Infrared Organic Photodetectors. , 2022, 4, 882-890.		27
123	Phenanthro[1,10,9,8-cdefg]carbazole-containing copolymer for high performance thin-film transistors and polymer solar cells. Journal of Materials Chemistry, 2012, 22, 3696.	6.7	26
124	Dicyanovinyl Heterotetracenes: Synthesis, Solid-State Structures, and Photophysical Properties. Journal of Organic Chemistry, 2009, 74, 7322-7327.	1.7	25
125	NIR polymers and phototransistors. Journal of Materials Chemistry C, 2018, 6, 13049-13058.	2.7	25
126	Acid-Responsive Conductive Nanofiber of Tetrabenzoporphyrin Made by Solution Processing. Journal of the American Chemical Society, 2018, 140, 62-65.	6.6	24

#	Article	IF	CITATIONS
127	Organostannane-free polycondensation and eco-friendly processing strategy for the design of semiconducting polymers in transistors. Materials Horizons, 2020, 7, 1955-1970.	6.4	24
128	High-performance near-infrared polymeric phototransistors realized by combining cross-linked polymeric semiconductors and bulk heterojunction bilayer structures. Applied Materials Today, 2021, 22, 100899.	2.3	24
129	Tuning the threshold voltage by inserting a thin molybdenum oxide layer into organic field-effect transistors. Applied Physics Letters, 2007, 91, .	1.5	23
130	A simple nickel bis(dithiolene) complex as an excellent n-type molecular semiconductor for field-effect transistors. Chemical Communications, 2012, 48, 9965.	2.2	23
131	Tuning the light response of organic field-effect transistors using fluorographene nanosheets as an interface modification layer. Journal of Materials Chemistry C, 2014, 2, 6484.	2.7	22
132	Flexible Monolayer Molecular Crystalâ€Field Effect Transistors for Ultrasensitive and Selective Detection of Dimethoate. Advanced Electronic Materials, 2020, 6, 2000579.	2.6	22
133	Organic Fieldâ€Effect Transistors with a Low Pinchâ€Off Voltage and a Controllable Threshold Voltage. Advanced Materials, 2008, 20, 611-615.	11.1	21
134	Undoped, red organic light-emitting diodes based on a N,N,N',N'-tetraphenylbenzidine (TPD) derivative as red emitter with a triphenylamine derivative as hole-transporting layer. Dyes and Pigments, 2010, 84, 203-207.	2.0	21
135	Novel benzo[c][1,2,5]oxadiazole-naphthalenediimide based copolymer for high-performance air-stable n-type field-effect transistors exhibiting high electron mobility of 2.43 cm ² V ^{â^1} s ^{â^î1} . Journal of Materials Chemistry C, 2017, 5, 2892-2898.	2.7	21
136	Catalytic Synthesis and Structural Characterizations of a Highly Crystalline Polyphenylacetylene Nanobelt Array. Journal of the American Chemical Society, 2007, 129, 12922-12923.	6.6	19
137	Perylene diimide copolymers with dithienothiophene and dithienopyrrole: Use in nâ€channel and ambipolar fieldâ€effect transistors. Journal of Polymer Science Part A, 2013, 51, 1550-1558.	2.5	19
138	Mobility of Long-Lived Fullerene Radical in Solid State and Nonlinear Temperature Dependence. Journal of the American Chemical Society, 2014, 136, 3366-3369.	6.6	19
139	Room-Temperature, Solution-Processed SiO <i>_x</i> via Photochemistry Approach for Highly Flexible Resistive Switching Memory. ACS Applied Materials & Interfaces, 2020, 12, 56186-56194.	4.0	19
140	A Selfâ€Assembled 3D Penetrating Nanonetwork for Highâ€Performance Intrinsically Stretchable Polymer Lightâ€Emitting Diodes. Advanced Materials, 2022, 34, e2201844.	11.1	19
141	High-mobility, air stable bottom-contact n-channel thin film transistors based on <i>N,N</i> ′-ditridecyl perylene diimide. Applied Physics Letters, 2013, 103, .	1.5	18
142	Synthesis and characterization of phenanthrocarbazole–diketopyrrolopyrrole copolymer for highâ€performance fieldâ€effect transistors. Journal of Polymer Science Part A, 2013, 51, 2208-2215.	2.5	18
143	Highly Sensitive Fieldâ€Effect Ammonia/Amine Sensors with Low Driving Voltage Based on Low Bandgap Polymers. Advanced Electronic Materials, 2018, 4, 1800025	2.6	18
144	Recent progress in stretchable organic field-effect transistors. Science China Technological Sciences, 2019, 62, 1255-1276.	2.0	18

YUNLONG GUO

#	Article	IF	CITATIONS
145	Methoxylation of quinoidal bithiophene as a single regioisomer building block for narrow-bandgap conjugated polymers and high-performance organic field-effect transistors. Journal of Materials Chemistry C, 2020, 8, 15168-15174.	2.7	18
146	Synthesis, Self-Assembly and Solution-Processed Field-Effect Transistors of a Liquid Crystalline Bis(dithienothiophene) Derivative. Journal of Physical Chemistry C, 2009, 113, 16232-16237.	1.5	17
147	Production of graphene nanospheres by annealing of graphene oxide in solution. Nano Research, 2011, 4, 705-711.	5.8	17
148	Ultrahigh density modulation of aligned single-walled carbon nanotube arrays. Nano Research, 2011, 4, 931-937.	5.8	17
149	Selective Crystallization of Organic Semiconductors for High Performance Organic Field-Effect Transistors. Chemistry of Materials, 2009, 21, 4873-4879.	3.2	16
150	Controllable fabrication of ultrathin free-standing graphene films. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2014, 372, 20130017.	1.6	16
151	Highâ€performance fieldâ€effect transistors based on furanâ€containing diketopyrrolopyrrole copolymer under a mild annealing temperature. Journal of Polymer Science Part A, 2014, 52, 1970-1977.	2.5	16
152	Effects of water on the forward and backward conversions of lead(<scp>ii</scp>) iodide to methylammonium lead perovskite. Journal of Materials Chemistry A, 2017, 5, 23815-23821.	5.2	15
153	Aldol Polymerization to Construct Half-Fused Semiconducting Polymers. Macromolecules, 2021, 54, 10312-10320.	2.2	15
154	A thriving decade: rational design, green synthesis, and cutting-edge applications of isoindigo-based conjugated polymers in organic field-effect transistors. Science China Chemistry, 2022, 65, 1225-1264.	4.2	15
155	Effect of substituents on electronic properties, thin film structure and device performance of dithienothiophene–phenylene cooligomers. Thin Solid Films, 2009, 517, 2968-2973.	0.8	14
156	Research Progress in Functional Stretchable Organic Electronic Devices. Acta Chimica Sinica, 2020, 78, 848.	0.5	14
157	Organozinc Compounds as Effective Dielectric Modification Layers for Polymer Fieldâ€Effect Transistors. Advanced Functional Materials, 2012, 22, 4139-4148.	7.8	12
158	The synthesis of 2,6-dialkylphenyldithieno[3,2-b:2′,3′-d]thiophene derivatives and their applications in organic field-effect transistors. Dyes and Pigments, 2013, 98, 17-24.	2.0	12
159	Organic photodiodes for near-infrared light detection. Semiconductor Science and Technology, 2020, 35, 114001.	1.0	12
160	Synthesis and characterization of fullerene derivatives with perfluoroalkyl groups. Journal of Materials Chemistry, 2009, 19, 3258.	6.7	11
161	Resistance Switching Behavior of a Perhydropolysilazane-Derived SiOx-Based Memristor. Journal of Physical Chemistry Letters, 2021, 12, 10728-10734.	2.1	11
162	Photosensors: A Retinaâ€Like Dual Band Organic Photosensor Array for Filterâ€Free Nearâ€Infraredâ€ŧoâ€Memory Operations (Adv. Mater. 32/2017). Advanced Materials, 2017, 29, .	11.1	8

#	Article	IF	CITATIONS
163	Organic Semiconductors for Room-Temperature Spin Valves. , 2022, 4, 805-814.		8
164	Quantitative Analysis of the Role of the First Layer in p―and nâ€Type Organic Fieldâ€Effect Transistors with Graphene Electrodes. Advanced Materials, 2012, 24, 1471-1475.	11.1	7
165	Flexible organic-inorganic hybrid perovskite solar cells. Science China Materials, 2016, 59, 495-506.	3.5	7
166	Carbon nanotube-based van der Waals heterojunction electrodes for high-performance intrinsically stretchable organic photoelectric transistors. Giant, 2021, 7, 100060.	2.5	7
167	Functional biochar for efficient residue treatment of sulfonylurea herbicides by weak molecular interaction. Biochar, 2021, 3, 545-556.	6.2	7
168	Regulation of the backbone structure and optoelectrical properties of bis-pyridal[2,1,3]thiadiazole-based ambipolar semiconducting polymers <i>via</i> a fluorination strategy. Journal of Materials Chemistry C, 2021, 9, 15083-15094.	2.7	7
169	Tailoring molecular weight of polymeric dielectric to enhance electron and hole mobilities in polymer field-effect transistors. Polymer, 2016, 99, 496-502.	1.8	6
170	Neuromorphic Devices: A Ferroelectric/Electrochemical Modulated Organic Synapse for Ultraflexible, Artificial Visual-Perception System (Adv. Mater. 46/2018). Advanced Materials, 2018, 30, 1870349.	11.1	6
171	Nonchlorinated Solubility Enhanced by Lipophilicity: An Effective Strategy for Environmentally Benign Processing of Rigidly Regular nâ€ŧype Polymeric Semiconductors. Advanced Electronic Materials, 2021, 7, 2100526.	2.6	6
172	Multifunctional neurosynaptic devices for human perception systems. Journal of Semiconductors, 2022, 43, 051201.	2.0	6
173	A nonchlorinated solvent-processed polymer semiconductor for high-performance ambipolar transistors. National Science Review, 2022, 9, nwab145.	4.6	5
174	Enabling the aqueous solution sensing of skin-conformable organic field-effect transistor using an amphiphilic molecule. Applied Materials Today, 2022, 26, 101275.	2.3	5
175	Graphene: Twoâ€Stage Metalâ€Catalystâ€Free Growth of Highâ€Quality Polycrystalline Graphene Films on Silicon Nitride Substrates (Adv. Mater. 7/2013). Advanced Materials, 2013, 25, 938-938.	11.1	4
176	Synthesis of Two-Dimensional C–C Bonded Truxene-Based Covalent Organic Frameworks by Irreversible BrÃ,nsted Acid-Catalyzed Aldol Cyclotrimerization. Research, 2021, 2021, 9790705.	2.8	4
177	Organic Electronics: "Regioselective Deposition―Method to Pattern Silver Electrodes Facilely and Efficiently with High Resolution: Towards All-Solution-Processed, High-Performance,		

#	Article	Сіта	TIONS
181	Synthesis and Characterization of N,N′â€Substituted 15,15,16,16â€Tetracyanoâ€6,13â€pentacenequinodimethaneâ€2,3,9,10â€ŧetracarboxylic Diimide Derivatives. Asian Journal of Organic Chemistry, 2013, 2, 220-224.	3 2	

Multilayer Graphene-Coated Atomic Force Microscopy Tips for Molecular Junctions (Adv. Mater.) Tj ETQq000 rgBT $_{11,1}^{O}$ relock 10 Tf 50 70 relock 10 Tf 50 70

183	Transistors: Inkjet Printing Shortâ€Channel Polymer Transistors with Highâ€Performance and Ultrahigh Photoresponsivity (Adv. Mater. 27/2014). Advanced Materials, 2014, 26, 4752-4752.	11.1	1
184	Graphene: Near-Equilibrium Chemical Vapor Deposition of High-Quality Single-Crystal Graphene Directly on Various Dielectric Substrates (Adv. Mater. 9/2014). Advanced Materials, 2014, 26, 1471-1471.	11.1	1
185	Preface: innovative flexible energy. Science China Materials, 2016, 59, 409-409.	3.5	1
186	Organic FETs: Functional Organic Field-Effect Transistors (Adv. Mater. 40/2010). Advanced Materials, 2010, 22, n/a-n/a.	11.1	0
187	Organic Thin-Film Transistors: Interfacial Heterogeneity of Surface Energy in Organic Field-Effect Transistors (Adv. Mater. 8/2011). Advanced Materials, 2011, 23, 1008-1008.	11.1	0

Graphene Sheets: Gramâ \in Scale Synthesis of Graphene Sheets by a Catalytic Arcâ \in Discharge Method (Small) Tj ETQqQ 0 0 rgBT /Overloc

189	Organic Field-Effect Transistors: Triple Acceptors in a Polymeric Architecture for Balanced Ambipolar Transistors and High-Gain Inverters (Adv. Mater. 32/2018). Advanced Materials, 2018, 30, 1870241.	11.1	0
190	50.4: Invited Paper: Flexible organic semiconductors and transistors. Digest of Technical Papers SID International Symposium, 2021, 52, 610-610.	0.1	0
191	Highly sensitive solid chemical sensor for veterinary drugs based on the synergism between hydrogen bonds and low-dimensional polymer networks. Journal of Materials Chemistry C, 0, , .	2.7	0
192	Ultrahighâ€Performance Optoelectronic Skin Based on Intrinsically Stretchable Perovskiteâ€Polymer Heterojunction Transistors (Adv. Mater. 4/2022). Advanced Materials, 2022, 34, .	11.1	0
193	Vapor-solid interfacial reaction and polymerization for wafer-scale uniform and ultrathin two-dimensional organic films. Science China Materials, 0, , 1.	3.5	0