Ilya Borovok

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7948200/publications.pdf

Version: 2024-02-01

279798 254184 2,003 46 23 43 citations h-index g-index papers 48 48 48 2716 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Listeria monocytogenes TcyKLMN Cystine/Cysteine Transporter Facilitates Glutathione Synthesis and Virulence Gene Expression. MBio, 2022, 13, e0044822.	4.1	6
2	A dual-function phage regulator controls the response of cohabiting phage elements via regulation of the bacterial SOS response. Cell Reports, 2022, 39, 110723.	6.4	10
3	A Metzincin and TIMP-Like Protein Pair of a Phage Origin Sensitize Listeria monocytogenes to Phage Lysins and Other Cell Wall Targeting Agents. Microorganisms, 2021, 9, 1323.	3.6	1
4	Renewable fatty acid ester production in Clostridium. Nature Communications, 2021, 12, 4368.	12.8	24
5	A GC-Rich Prophage-Like Genomic Region of Mycoplasma bovirhinis HAZ141_2 Carries a Gene Cluster Encoding Resistance to Kanamycin and Neomycin. Antimicrobial Agents and Chemotherapy, 2021, 65, .	3.2	7
6	The aadE*-sat4-aphA-3 Gene Cluster of Mycoplasma bovirhinis HAZ141_2 Undergoes Genomic Rearrangements Influencing the Primary Promoter Sequence. Antibiotics, 2021, 10, 1335.	3.7	1
7	Active Lysogeny in Listeria Monocytogenes Is a Bacteria-Phage Adaptive Response in the Mammalian Environment. Cell Reports, 2020, 32, 107956.	6.4	31
8	RRNPP-type quorum-sensing systems regulate solvent formation, sporulation and cell motility in Clostridium saccharoperbutylacetonicum. Biotechnology for Biofuels, 2020, 13, 84.	6.2	12
9	Genomics-based epidemiology of bovine Mycoplasma bovis strains in Israel. BMC Genomics, 2020, 21, 70.	2.8	22
10	Distinctive ligandâ€binding specificities of tandem PA14 biomassâ€sensory elements from <i>Clostridium thermocellum</i> and <i>Clostridium clariflavum</i> Bioinformatics, 2019, 87, 917-930.	2.6	8
11	Faecal Proteases from Pouchitis Patients Activate Protease Activating Receptor-2 to Disrupt the Epithelial Barrier. Journal of Crohn's and Colitis, 2019, 13, 1558-1568.	1.3	8
12	Coordination of cohabiting phage elements supports bacteria–phage cooperation. Nature Communications, 2019, 10, 5288.	12.8	35
13	Novel ATP-cone-driven allosteric regulation of ribonucleotide reductase via the radical-generating subunit. ELife, 2018, 7, .	6.0	40
14	Controlled branched-chain amino acids auxotrophy in Listeria monocytogenes allows isoleucine to serve as a host signal and virulence effector. PLoS Genetics, 2018, 14, e1007283.	3.5	25
15	Revisiting the Regulation of the Primary Scaffoldin Gene in Clostridium thermocellum. Applied and Environmental Microbiology, 2017, 83, .	3.1	10
16	Complexity of the Ruminococcus flavefaciens FD-1 cellulosome reflects an expansion of family-related protein-protein interactions. Scientific Reports, 2017, 7, 42355.	3.3	31
17	Temperate bacteriophages as regulators of host behavior. Current Opinion in Microbiology, 2017, 38, 81-87.	5.1	94
18	How does cellulosome composition influence deconstruction of lignocellulosic substrates in Clostridium (Ruminiclostridium) thermocellum DSM 1313?. Biotechnology for Biofuels, 2017, 10, 222.	6.2	47

#	Article	IF	CITATIONS
19	Pan-Cellulosomics of Mesophilic Clostridia: Variations on a Theme. Microorganisms, 2017, 5, 74.	3.6	17
20	Application of Long Sequence Reads To Improve Genomes for Clostridium thermocellum AD2, Clostridium thermocellum LQRI, and Pelosinus fermentans R7. Genome Announcements, 2016, 4, .	0.8	2
21	High Prevalence of Diverse Insertion Sequences within the rRNA Operons of Mycoplasma bovis. Applied and Environmental Microbiology, 2016, 82, 6386-6394.	3.1	3
22	An Extended Cyclic Di-GMP Network in the Predatory Bacterium Bdellovibrio bacteriovorus. Journal of Bacteriology, 2016, 198, 127-137.	2.2	25
23	Decoding Biomass-Sensing Regulons of Clostridium thermocellum Alternative Sigma-I Factors in a Heterologous Bacillus subtilis Host System. PLoS ONE, 2016, 11, e0146316.	2.5	31
24	Near-Complete Genome Sequence of the Cellulolytic Bacterium <i>Bacteroides</i> () Tj ETQq0 0 0 rgBT /Overloo	ck 10.Tf 50) 542 Td (<i>)</i>
25	The metabolic regulator <scp>CodY</scp> links <scp><i>L</i></scp> <i>iisteria monocytogenes</i> metabolism to virulence by directly activating the virulence regulatory gene <scp><i>prfA</i></scp> . Molecular Microbiology, 2015, 95, 624-644.	2.5	81
26	Standalone cohesin as a molecular shuttle in cellulosome assembly. FEBS Letters, 2015, 589, 1569-1576.	2.8	14
27	Functional phylotyping approach for assessing intraspecific diversity of Ruminococcus albus within the rumen microbiome. FEMS Microbiology Letters, 2015, 362, 1-10.	1.8	12
28	Ruminococcal cellulosome systems from rumen to human. Environmental Microbiology, 2015, 17, 3407-3426.	3.8	104
29	A new perspective on lysogeny: prophages as active regulatory switches of bacteria. Nature Reviews Microbiology, 2015, 13, 641-650.	28.6	357
30	Three cellulosomal xylanase genes in <i>Clostridium thermocellum</i> are regulated by both vegetative SigA ($ f $ ^A) and alternative SigI6 ($ f $ ^{I6}) factors. FEBS Letters, 2015, 589, 3133-3140.	2.8	19
31	Rumen Cellulosomics: Divergent Fiber-Degrading Strategies Revealed by Comparative Genome-Wide Analysis of Six Ruminococcal Strains. PLoS ONE, 2014, 9, e99221.	2.5	7 3
32	Structural characterization of a novel autonomous cohesin from <i>Ruminococcus flavefaciens</i> Acta Crystallographica Section F, Structural Biology Communications, 2014, 70, 450-456.	0.8	3
33	Fine-structural variance of family 3 carbohydrate-binding modules as extracellular biomass-sensing components of <i>Clostridium thermocellum </i> anti-if < sup > I factors. Acta Crystallographica Section D: Biological Crystallography, 2014, 70, 522-534.	2.5	26
34	Cellulosomics of the cellulolytic thermophile Clostridium clariflavum. Biotechnology for Biofuels, 2014, 7, 100.	6.2	53
35	Structure and regulation of the cellulose degradome in Clostridium cellulolyticum. Biotechnology for Biofuels, 2013, 6, 73.	6.2	49
36	Integrative Genomic Analysis Identifies Isoleucine and CodY as Regulators of Listeria monocytogenes Virulence. PLoS Genetics, 2012, 8, e1002887.	3.5	108

#	Article	IF	CITATION
37	Prophage Excision Activates Listeria Competence Genes that Promote Phagosomal Escape and Virulence. Cell, 2012, 150, 792-802.	28.9	199
38	Genome-wide analysis of Acetivibrio cellulolyticus provides a blueprint of an elaborate cellulosome system. BMC Genomics, 2012, 13, 210.	2.8	54
39	Genetic makeup of the Corynebacterium glutamicum LexA regulon deduced from comparative transcriptomics and in vitro DNA band shift assays. Microbiology (United Kingdom), 2009, 155, 1459-1477.	1.8	41
40	Coenzyme B12 Controls Transcription of the Streptomyces Class Ia Ribonucleotide Reductase nrdABS Operon via a Riboswitch Mechanism. Journal of Bacteriology, 2006, 188, 2512-2520.	2.2	48
41	The Streptomyces NrdR Transcriptional Regulator Is a Zn Ribbon/ATP Cone Protein That Binds to the Promoter Regions of Class Ia and Class II Ribonucleotide Reductase Operons. Journal of Bacteriology, 2006, 188, 7635-7644.	2.2	47
42	Alternative oxygen-dependent and oxygen-independent ribonucleotide reductases in Streptomyces: cross-regulation and physiological role in response to oxygen limitation. Molecular Microbiology, 2004, 54, 1022-1035.	2.5	42
43	Streptomyces spp. contain class Ia and class II ribonucleotide reductases: expression analysis of the genes in vegetative growth The GenBank/EMBL/DDBJ accession numbers for the sequences determined in this paper are AJ224870, AJ276618, AJ277778, AJ295338 and AJ295339 Microbiology (United Kingdom), 2002. 148. 391-404.	1.8	28
44	Analysis of Transcription of the Staphylococcus aureus Aerobic Class Ib and Anaerobic Class III Ribonucleotide Reductase Genes in Response to Oxygen. Journal of Bacteriology, 2001, 183, 7260-7272.	2.2	96
45	Recent advances in the structure and function of isopenicillin N synthase. Antonie Van Leeuwenhoek, 1999, 75, 33-39.	1.7	16
46	The glutamine ligand in the ferrous iron active site of isopenicillin N synthase of Streptomyces jumonjinensis is not essential for catalysis. FEBS Letters, 1997, 405, 172-174.	2.8	31