Hua-Bin Zhang

List of Publications by Citations

Source: https://exaly.com/author-pdf/7947644/hua-bin-zhang-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

9,048 47 95 99 h-index g-index citations papers 6.71 102 11,225 12.3 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
99	Metal-Organic-Framework-Based Materials as Platforms for Renewable Energy and Environmental Applications. <i>Joule</i> , 2017 , 1, 77-107	27.8	524
98	Single-Atom Catalysts: Emerging Multifunctional Materials in Heterogeneous Catalysis. <i>Advanced Energy Materials</i> , 2018 , 8, 1701343	21.8	485
97	Efficient Visible-Light-Driven Carbon Dioxide Reduction by a Single-Atom Implanted Metal-Organic Framework. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 14310-14314	16.4	450
96	In Situ Bond Modulation of Graphitic Carbon Nitride to Construct pl Homojunctions for Enhanced Photocatalytic Hydrogen Production. <i>Advanced Functional Materials</i> , 2016 , 26, 6822-6829	15.6	429
95	Targeted Synthesis of 2H- and 1T-Phase MoS Monolayers for Catalytic Hydrogen Evolution. <i>Advanced Materials</i> , 2016 , 28, 10033-10041	24	415
94	Active Sites Implanted Carbon Cages in Core-Shell Architecture: Highly Active and Durable Electrocatalyst for Hydrogen Evolution Reaction. <i>ACS Nano</i> , 2016 , 10, 684-94	16.7	371
93	Dynamic traction of lattice-confined platinum atoms into mesoporous carbon matrix for hydrogen evolution reaction. <i>Science Advances</i> , 2018 , 4, eaao6657	14.3	344
92	Electrostatic Self-Assembly of Nanosized Carbon Nitride Nanosheet onto a Zirconium Metal Drganic Framework for Enhanced Photocatalytic CO2 Reduction. <i>Advanced Functional Materials</i> , 2015 , 25, 5360-5367	15.6	344
91	An Amine-Functionalized Iron(III) Metal-Organic Framework as Efficient Visible-Light Photocatalyst for Cr(VI) Reduction. <i>Advanced Science</i> , 2015 , 2, 1500006	13.6	289
90	Promoting Active Species Generation by Plasmon-Induced Hot-Electron Excitation for Efficient Electrocatalytic Oxygen Evolution. <i>Journal of the American Chemical Society</i> , 2016 , 138, 9128-36	16.4	269
89	Surface Modulation of Hierarchical MoS2 Nanosheets by Ni Single Atoms for Enhanced Electrocatalytic Hydrogen Evolution. <i>Advanced Functional Materials</i> , 2018 , 28, 1807086	15.6	237
88	Surface-Plasmon-Enhanced Photodriven CO2 Reduction Catalyzed by Metal-Organic-Framework-Derived Iron Nanoparticles Encapsulated by Ultrathin Carbon Layers. <i>Advanced Materials</i> , 2016 , 28, 3703-10	24	227
87	Electronic structure engineering to boost oxygen reduction activity by controlling the coordination of the central metal. <i>Energy and Environmental Science</i> , 2018 , 11, 2348-2352	35.4	203
86	Engineering coordination polymers for photocatalysis. <i>Nano Energy</i> , 2016 , 22, 149-168	17.1	197
85	Integrating the g-CN Nanosheet with B-H Bonding Decorated Metal-Organic Framework for CO Activation and Photoreduction. <i>ACS Nano</i> , 2018 , 12, 5333-5340	16.7	186
84	Drastic Enhancement of Photocatalytic Activities over Phosphoric Acid Protonated Porous g-C3 N4 Nanosheets under Visible Light. <i>Small</i> , 2016 , 12, 4431-9	11	182
83	A multi-metal-cluster MOF with Cu4I4 and Cu6S6 as functional groups exhibiting dual emission with both thermochromic and near-IR character. <i>Chemical Science</i> , 2013 , 4, 1484	9.4	178

(2016-2018)

82	A modular strategy for decorating isolated cobalt atoms into multichannel carbon matrix for electrocatalytic oxygen reduction. <i>Energy and Environmental Science</i> , 2018 , 11, 1980-1984	35.4	173
81	Co-porphyrin/carbon nitride hybrids for improved photocatalytic CO2 reduction under visible light. <i>Applied Catalysis B: Environmental</i> , 2017 , 200, 141-149	21.8	152
80	Unveiling the Activity Origin of Electrocatalytic Oxygen Evolution over Isolated Ni Atoms Supported on a N-Doped Carbon Matrix. <i>Advanced Materials</i> , 2019 , 31, e1904548	24	151
79	Intramolecular electronic coupling in porous iron cobalt (oxy)phosphide nanoboxes enhances the electrocatalytic activity for oxygen evolution. <i>Energy and Environmental Science</i> , 2019 , 12, 3348-3355	35.4	147
78	Hierarchical MoS Hollow Architectures with Abundant Mo Vacancies for Efficient Sodium Storage. <i>ACS Nano</i> , 2019 , 13, 5533-5540	16.7	134
77	Full-colour fluorescent materials based on mixed-lanthanide(III) metalBrganic complexes with high-efficiency white light emission. <i>Journal of Materials Chemistry C</i> , 2013 , 1, 888-891	7.1	132
76	Conversion of Carbon Dioxide by Methane Reforming under Visible-Light Irradiation: Surface-Plasmon-Mediated Nonpolar Molecule Activation. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 11545-9	16.4	129
75	Efficient Visible-Light-Driven Carbon Dioxide Reduction by a Single-Atom Implanted Metal©rganic Framework. <i>Angewandte Chemie</i> , 2016 , 128, 14522-14526	3.6	124
74	Light-Enhanced Carbon Dioxide Activation and Conversion by Effective Plasmonic Coupling Effect of Pt and Au Nanoparticles. <i>ACS Applied Materials & English </i>	9.5	118
73	Tunable luminescence and white light emission of mixed lanthanideBrganic frameworks based on polycarboxylate ligands. <i>Journal of Materials Chemistry C</i> , 2016 , 4, 3364-3374	7.1	99
72	Mesoporous palladiumDopper bimetallic electrodes for selective electrocatalytic reduction of aqueous CO2 to CO. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 4776-4782	13	93
71	Highly luminescent and thermostable lanthanide-carboxylate framework materials with helical configurations. <i>Journal of Materials Chemistry</i> , 2012 , 22, 21210		93
70	Highly active nonprecious metal hydrogen evolution electrocatalyst: ultrafine molybdenum carbide nanoparticles embedded into a 3D nitrogen-implanted carbon matrix. <i>NPG Asia Materials</i> , 2016 , 8, e293	- 2 293	89
69	Cage-Type Highly Graphitic Porous Carbon-Co3O4 Polyhedron as the Cathode of Lithium-Oxygen Batteries. <i>ACS Applied Materials & Acs Applied & Acs</i>	9.5	89
68	A highly luminescent chameleon: fine-tuned emission trajectory and controllable energy transfer. Journal of Materials Chemistry C, 2014 , 2, 1367	7.1	85
67	Ultrasmall MoO Clusters as a Novel Cocatalyst for Photocatalytic Hydrogen Evolution. <i>Advanced Materials</i> , 2019 , 31, e1804883	24	82
66	Surface step decoration of isolated atom as electron pumping: Atomic-level insights into visible-light hydrogen evolution. <i>Nano Energy</i> , 2018 , 45, 109-117	17.1	8o
65	A CoDE Lembedded porous ZnO rhombic dodecahedron prepared using zeolitic imidazolate frameworks as precursors for COD hotoreduction. <i>Nanoscale</i> , 2016 , 8, 6712-20	7.7	77

64	Emerging Multifunctional Single-Atom Catalysts/Nanozymes. ACS Central Science, 2020, 6, 1288-1301	16.8	76
63	Isolated Cobalt Centers on WO Nanowires Perform as a Reaction Switch for Efficient CO Photoreduction. <i>Journal of the American Chemical Society</i> , 2021 , 143, 2173-2177	16.4	74
62	Elemental Boron for Efficient Carbon Dioxide Reduction under Light Irradiation. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 5570-5574	16.4	73
61	Implanting Isolated Ru Atoms into Edge-Rich Carbon Matrix for Efficient Electrocatalytic Hydrogen Evolution. <i>Advanced Energy Materials</i> , 2020 , 10, 2000882	21.8	70
60	n-type boron phosphide as a highly stable, metal-free, visible-light-active photocatalyst for hydrogen evolution. <i>Nano Energy</i> , 2016 , 28, 158-163	17.1	70
59	Direct probing of atomically dispersed Ru species over multi-edged TiO for highly efficient photocatalytic hydrogen evolution. <i>Science Advances</i> , 2020 , 6,	14.3	62
58	Atomically Dispersed Reactive Centers for Electrocatalytic CO Reduction and Water Splitting. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 13177-13196	16.4	60
57	Interface engineered in situ anchoring of CoS nanoparticles into a multiple doped carbon matrix: highly efficient zinc-air batteries. <i>Nanoscale</i> , 2018 , 10, 2649-2657	7.7	53
56	Exposing unsaturated Cu-O sites in nanoscale Cu-MOF for efficient electrocatalytic hydrogen evolution. <i>Science Advances</i> , 2021 , 7,	14.3	53
55	Photo-enhanced lithium oxygen batteries with defective titanium oxide as both photo-anode and air electrode. <i>Energy Storage Materials</i> , 2018 , 13, 49-56	19.4	49
54	An inorganic-organic composite framework with an unprecedented 3D heterometallic inorganic connectivity and white-light emission. <i>Chemical Communications</i> , 2013 , 49, 2231-3	5.8	49
53	A Highly Energetic N-Rich Metal-Organic Framework as a New High-Energy-Density Material. <i>Chemistry - A European Journal</i> , 2016 , 22, 1141-5	4.8	47
52	Ultra-small freestanding amorphous molybdenum sulfide colloidal nanodots for highly efficient photocatalytic hydrogen evolution reaction. <i>Applied Catalysis B: Environmental</i> , 2018 , 232, 446-453	21.8	45
51	Hierarchical nanowire arrays based on carbon nanotubes and Co3O4 decorated ZnO for enhanced photoelectrochemical water oxidation. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 13731-13737	13	45
50	Two luminescent Cu(I) coordination polymers based on the 1-(4-tetrazolephenyl)imidazole ligand for sensing of nitrobenzene. <i>Inorganic Chemistry Frontiers</i> , 2014 , 1, 389	6.8	42
49	Enhanced Photocatalytic Oxidation of Isopropanol by [email[protected]2 CoreShell Structure with Ultrathin Anatase Porous Shell: Toxic Intermediate Control. <i>Industrial & Discrete Manager Chemistry Research</i> , 2016 , 55, 8096-8103	3.9	42
48	Improved Photocatalytic H Evolution over G-Carbon Nitride with Enhanced In-Plane Ordering. <i>Small</i> , 2016 , 12, 6160-6166	11	41
47	Boosting electrocatalytic hydrogen evolution by plasmon-driven hot-electron excitation. <i>Nanoscale</i> , 2018 , 10, 2236-2241	7.7	36

(2020-2018)

46	Interface Designing over WS2/W2C for Enhanced Hydrogen Evolution Catalysis. <i>ACS Applied Energy Materials</i> , 2018 , 1, 3377-3384	6.1	34
45	Asymmetric induction in homochiral MOFs: from interweaving double helices to single helices. <i>Chemical Communications</i> , 2015 , 51, 16331-3	5.8	30
44	Manipulating the Local Coordination and Electronic Structures for Efficient Electrocatalytic Oxygen Evolution. <i>Advanced Materials</i> , 2021 , 33, e2103004	24	30
43	Engineering the Coordination Sphere of Isolated Active Sites to Explore the Intrinsic Activity in Single-Atom Catalysts. <i>Nano-Micro Letters</i> , 2021 , 13, 136	19.5	28
42	Synthesis, structures and luminescent properties of new Pb(II)/M(I) (M = K, Rb and Cs) frameworks based on dicarboxylic acids: a novel icosahedral Pb6-M6 SBU. <i>CrystEngComm</i> , 2012 , 14, 936-944	3.3	27
41	An alternative strategy to construct Fe(II)-based MOFs with multifarious structures and magnetic behaviors. <i>CrystEngComm</i> , 2014 , 16, 9208-9215	3.3	26
40	Acentric and chiral heterometallic inorganic organic hybrid frameworks mediated by alkali or alkaline earth ions: synthesis and NLO properties. <i>CrystEngComm</i> , 2014 , 16, 4059	3.3	24
39	Vertically Aligned MoS with In-Plane Selectively Cleaved Mo-S Bond for Hydrogen Production. <i>Nano Letters</i> , 2021 , 21, 1848-1855	11.5	24
38	Recent Advances on Transition Metal Dichalcogenides for Electrochemical Energy Conversion. <i>Advanced Materials</i> , 2021 , 33, e2008376	24	24
37	Two enantiomorphic 3D Zn(II)Barboxylate MOFs with double helical structures serving as a chiral source induced by hydrogen bonding. <i>CrystEngComm</i> , 2012 , 14, 4165	3.3	23
36	Synthesis, Structures, and Magnetic Properties of Three 3D Coordination Polymers Based on M4O4 Cubanes (M = MnII, FeII, CoII). <i>European Journal of Inorganic Chemistry</i> , 2012 , 2012, 4029-4035	2.3	21
35	Synthesis of a Boron-Imidazolate Framework Nanosheet with Dimer Copper Units for CO Electroreduction to Ethylene. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 16687-16692	16.4	21
34	Atomically defined Co on two-dimensional TiO2 nanosheet for photocatalytic hydrogen evolution. <i>Chemical Engineering Journal</i> , 2021 , 420, 127681	14.7	20
33	Double defects modified carbon nitride nanosheets with enhanced photocatalytic hydrogen evolution. <i>Physical Chemistry Chemical Physics</i> , 2018 , 20, 17471-17476	3.6	20
32	Interweaving of two enantiomorphic 3D Cd(II)/K(I) coordination polymers with homochiral unequal triple concentric helical chains. <i>CrystEngComm</i> , 2013 , 15, 5201	3.3	19
31	Conversion of Carbon Dioxide by Methane Reforming under Visible-Light Irradiation: Surface-Plasmon-Mediated Nonpolar Molecule Activation. <i>Angewandte Chemie</i> , 2015 , 127, 11707-1171	1 ^{3.6}	18
30	Interpreted Recognition Process: A Highly Sensitive and Selective Luminescence Chemosensor. <i>Chemistry - A European Journal</i> , 2015 , 21, 11767-72	4.8	18
29	Subnanometer iron clusters confined in a porous carbon matrix for highly efficient zinclir batteries. <i>Nanoscale Horizons</i> , 2020 , 5, 359-365	10.8	18

28	Surface Modification of Two-Dimensional Photocatalysts for Solar Energy Conversion <i>Advanced Materials</i> , 2022 , e2200180	24	18
27	Toward solar-driven carbon recycling. <i>Joule</i> , 2022 ,	27.8	17
26	Operando Monitoring and Deciphering the Structural Evolution in Oxygen Evolution Electrocatalysis. <i>Advanced Energy Materials</i> ,2103383	21.8	17
25	Elemental Boron for Efficient Carbon Dioxide Reduction under Light Irradiation. <i>Angewandte Chemie</i> , 2017 , 129, 5662-5666	3.6	16
24	Absolute helicity induction: chiral information transfer from metal centre to the framework. <i>CrystEngComm</i> , 2014 , 16, 1245	3.3	16
23	An effective method for the synthesis of 3D inorganic Ln(III)K(I) sulfate open frameworks with unusually high thermal stability: in situ generation of sulfate anions. <i>Journal of Materials Chemistry</i> , 2012 , 22, 6831		14
22	Single-atom catalysts for photocatalytic energy conversion. <i>Joule</i> , 2022 , 6, 92-133	27.8	14
21	Highly efficient electrocatalysts for overall water splitting: mesoporous CoS/MoS with hetero-interfaces. <i>Chemical Communications</i> , 2021 , 57, 4847-4850	5.8	14
20	Encapsulation of an interpenetrated diamondoid inorganic building block in a metal-organic framework. <i>Chemistry - A European Journal</i> , 2015 , 21, 4931-4	4.8	13
19	An unusual highly connected 3D net with hydrophilic pore surface. <i>CrystEngComm</i> , 2013 , 15, 3016	3.3	13
18	Co9S8 integrated into nitrogen/sulfur dual-doped carbon nanofibers as an efficient oxygen bifunctional electrocatalyst for ZnBir batteries. <i>Sustainable Energy and Fuels</i> , 2020 , 4, 1093-1098	5.8	12
17	Interfacing Photosynthetic Membrane Protein with Mesoporous WO Photoelectrode for Solar Water Oxidation. <i>Small</i> , 2018 , 14, e1800104	11	11
16	HZIF-based hybrids for electrochemical energy applications. <i>Nanoscale</i> , 2019 , 11, 15763-15769	7.7	11
15	Digital controlled luminescent emission via patterned deposition of lanthanide coordination compounds. <i>ACS Applied Materials & amp; Interfaces</i> , 2014 , 6, 12594-9	9.5	11
14	Atomically Dispersed Reactive Centers for Electrocatalytic CO2 Reduction and Water Splitting. <i>Angewandte Chemie</i> , 2021 , 133, 13285-13304	3.6	10
13	Synthesis, Structure, and Magnetic Study of Two Tridecanuclear Planar Cobalt Clusters with Unique Core Geometries. <i>European Journal of Inorganic Chemistry</i> , 2013 , 2013, 5534-5540	2.3	9
12	Unusual [CdII3O2(CO2)8] clusters as SBUs for the construction of a new pcu-type metal-organic framework. <i>Inorganic Chemistry Communication</i> , 2013 , 38, 11-13	3.1	7
11	Design of Hybrid Zeolitic Imidazolate Framework-Derived Material with C-Mo-S Triatomic Coordination for Electrochemical Oxygen Reduction. <i>Small</i> , 2021 , 17, e2003256	11	7

LIST OF PUBLICATIONS

10	Tuning Photoluminescence Emission of a Cadmium Drganic Framework by Excitation. <i>ChemPlusChem</i> , 2014 , 79, 1080-1082	2.8	6
9	An effective approach for constructing acentric heterometallic-organic framework with catalytic activity. <i>Inorganic Chemistry Communication</i> , 2014 , 43, 27-30	3.1	6
8	Hollow MoC/NC sphere for electromagnetic wave attenuation: direct observation of interfacial polarization on nanoscale hetero-interfaces. <i>Journal of Materials Chemistry A</i> , 2022 , 10, 1290-1298	13	6
7	Ultrahigh Density of Atomic CoFe-Electron Synergy in Noncontinuous Carbon Matrix for Highly Efficient Magnetic Wave Adsorption <i>Nano-Micro Letters</i> , 2022 , 14, 96	19.5	3
6	Synthesis of a BoronImidazolate Framework Nanosheet with Dimer Copper Units for CO2 Electroreduction to Ethylene. <i>Angewandte Chemie</i> , 2021 , 133, 16823-16828	3.6	2
5	Synergy between Confined Cobalt Centers and Oxygen Defects on Fe2O3 Platelets for Efficient Photocatalytic CO2 Reduction. <i>Solar Rrl</i> , 2022 , 6, 2100833	7.1	1
4	A hybrid zeolitic imidazolate framework-derived ZnO/ZnMoO heterostructure for electrochemical hydrogen production. <i>Dalton Transactions</i> , 2021 , 50, 11365-11369	4.3	1
3	Asymmetric metalBrganic frameworks with double helices for enantioselective recognition. <i>CrystEngComm</i> , 2021 , 23, 4748-4751	3.3	O
2	Kinetically accelerated and high-mass loaded lithium storage enabled by atomic iron embedded carbon nanofibers. <i>Nano Research</i> ,1	10	0
1	Rtktitelbild: Elemental Boron for Efficient Carbon Dioxide Reduction under Light Irradiation (Angew. Chem. 20/2017). <i>Angewandte Chemie</i> , 2017 , 129, 5724-5724	3.6	