Baodui Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7947344/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Preparation, characterization and cell labelling of strong pH-controlled bicolor fluorescence carbonized polymer dots. RSC Advances, 2022, 12, 1258-1264.	1.7	3
2	A dual-channel luminescent signal readout nanoprobe for rapid monitoring of biogenic amines in milk and yogurt. Sensors and Actuators B: Chemical, 2022, 357, 131435.	4.0	17
3	Tumor Microenvironmentâ€â€œAND―Nearâ€Infrared Lightâ€Activated Coordination Polymer Nanoprodrug for Onâ€Demand COâ€Sensitized Synergistic Cancer Therapy. Advanced Healthcare Materials, 2021, 10, e2001728.	3.9	19
4	Embedding CsPbBr ₃ quantum dots into a pillar[5]arene-based supramolecular self-assembly for an efficient photocatalytic cross-coupling hydrogen evolution reaction. Journal of Materials Chemistry A, 2021, 9, 10180-10185.	5.2	26
5	Anisotropic Evaporator with a T‧hape Design for Highâ€Performance Solarâ€Driven Zeroâ€Liquid Discharge. Small, 2021, 17, e2100969.	5.2	39
6	Nitrogen-Doped Chiral CuO/CoO Nanofibers: An Enhanced Electrochemiluminescence Sensing Strategy for Detection of 3,4-Dihydroxy-Phenylalanine Enantiomers. Analytical Chemistry, 2021, 93, 11470-11478.	3.2	31
7	Site-Selective Photosynthesis of Ag–AgCl@Au Nanomushrooms for NIR-II Light-Driven O ₂ - and O ₂ ^{•–} -Evolving Synergistic Photothermal Therapy against Deep Hypoxic Tumors. ACS Applied Materials & Interfaces, 2021, 13, 46451-46463.	4.0	15
8	Red-light-responsive coordination polymers nanorods: New strategy for ultrasensitive photothermal detection of targeted cancer cells. Biosensors and Bioelectronics, 2021, 190, 113417.	5.3	12
9	Carbon nanofiber supported Ni–ZnO catalyst for efficient and selective hydrogenation of pyrolysis gasoline. Catalysis Science and Technology, 2021, 11, 4216-4225.	2.1	7
10	NIR emissive light-harvesting systems through perovskite passivation and sequential energy transfer for third-level fingerprint imaging. Chemical Communications, 2021, 57, 9434-9437.	2.2	16
11	Confining perovskite quantum dots in the pores of a covalent-organic framework: quantum confinement- and passivation-enhanced light-harvesting and photocatalysis. Journal of Materials Chemistry A, 2021, 9, 24365-24373.	5.2	26
12	Silk nanofibers-ZIF hybrid membrane with improved treatment efficiency and highly enhanced water permeability for excellent removal of multiple pollutants from water. Environmental Science: Nano, 2021, 8, 3408-3420.	2.2	7
13	NIR II Light-Response Au Nanoframes: Amplification of a Pressure- and Temperature-Sensing Strategy for Portable Detection and Photothermal Therapy of Cancer Cells. Analytical Chemistry, 2021, 93, 14307-14316.	3.2	21
14	Aqueous stable Pd nanoparticles/covalent organic framework nanocomposite: an efficient nanoenzyme for colorimetric detection and multicolor imaging of cancer cells. Nanoscale, 2020, 12, 825-831.	2.8	37
15	Confining Carbon Dots in Porous Wood: The Singlet Oxygen Enhancement Strategy for Photothermal Signal-Amplified Detection of Mn ²⁺ . ACS Sustainable Chemistry and Engineering, 2020, 8, 17687-17696.	3.2	17
16	Visualization nanozyme based on tumor microenvironment "unlocking―for intensive combination therapy of breast cancer. Science Advances, 2020, 6, .	4.7	97
17	Spatiotemporally controlled O ₂ and singlet oxygen self-sufficient nanophotosensitizers enable the <i>in vivo</i> high-yield synthesis of drugs and efficient hypoxic tumor therapy. Chemical Science, 2020, 11, 8817-8827.	3.7	22
18	High-Throughput Metal Trap: Sulfhydryl-Functionalized Wood Membrane Stacks for Rapid and Highly Efficient Heavy Metal Ion Removal. ACS Applied Materials & Interfaces, 2020, 12, 15002-15011.	4.0	71

#	Article	IF	CITATIONS
19	β-Cyclodextrin Polymerized in Cross-Flowing Channels of Biomass Sawdust for Rapid and Highly Efficient Pharmaceutical Pollutants Removal from Water. ACS Applied Materials & Interfaces, 2020, 12, 32817-32826.	4.0	28
20	Enhanced Thermometric Sensor for Arsenate Analysis Based on Dual Temperature Readout Signaling Strategy. Analytical Chemistry, 2020, 92, 4672-4680.	3.2	18
21	Solution-phase vertical growth of aligned NiCo2O4 nanosheet arrays on Au nanosheets with weakened oxygen–hydrogen bonds for photocatalytic oxygen evolution. Nanoscale, 2020, 12, 6195-6203.	2.8	23
22	Palladium Coordination Polymers Nanosheets: New Strategy for Sensitive Photothermal Detection of H ₂ S. Analytical Chemistry, 2019, 91, 10823-10829.	3.2	42
23	Smart Responsive Luminescent Aptamer-Functionalized Covalent Organic Framework Hydrogel for High-Resolution Visualization and Security Protection of Latent Fingerprints. ACS Applied Materials & Interfaces, 2019, 11, 44664-44672.	4.0	40
24	Near-infrared light and tumor microenvironment dual responsive size-switchable nanocapsules for multimodal tumor theranostics. Nature Communications, 2019, 10, 4418.	5.8	153
25	Anion-exchangeable modulated fluorescence strategy for sensitive ascorbic acid detection with luminescent Eu hydroxy double salts nanosunflowers derived from MOFs. Sensors and Actuators B: Chemical, 2019, 296, 126636.	4.0	17
26	Facile preparation of a Ca(<scp>ii</scp>) carboxymethyl cellulose complex with enhanced calcium bioavailability for treatment of osteoporosis. Dalton Transactions, 2019, 48, 5735-5740.	1.6	6
27	In Situ Growth of Metal–Organic Frameworks in Three-Dimensional Aligned Lumen Arrays of Wood for Rapid and Highly Efficient Organic Pollutant Removal. Environmental Science & Technology, 2019, 53, 2705-2712.	4.6	157
28	Photochemical Synthesis of Porous CuFeSe ₂ /Au Heterostructured Nanospheres as SERS Sensor for Ultrasensitive Detection of Lung Cancer Cells and Their Biomarkers. ACS Sustainable Chemistry and Engineering, 2019, 7, 5200-5208.	3.2	33
29	Anions reversibly responsive luminescent nanocellulose hydrogels for cancer spheroids culture and release. Biomaterials, 2019, 194, 161-170.	5.7	28
30	Hyper-Cross-linked Porous MoS ₂ –Cyclodextrin-Polymer Frameworks: Durable Removal of Aromatic Phenolic Micropollutant from Water. Analytical Chemistry, 2018, 90, 3621-3627.	3.2	30
31	Porous Wood Members-Based Amplified Colorimetric Sensor for Hg ²⁺ Detection through Hg ²⁺ -Triggered Methylene Blue Reduction Reactions. Analytical Chemistry, 2018, 90, 4909-4915.	3.2	63
32	Reversible Response of Luminescent Terbium(III)–Nanocellulose Hydrogels to Anions for Latent Fingerprint Detection and Encryption. Angewandte Chemie, 2018, 130, 6902-6906.	1.6	11
33	Reversible Response of Luminescent Terbium(III)–Nanocellulose Hydrogels to Anions for Latent Fingerprint Detection and Encryption. Angewandte Chemie - International Edition, 2018, 57, 6786-6790.	7.2	115
34	Luminescent magnetic nanoparticles encapsulated in MOFs for highly selective and sensitive detection of ClO ^{â^'} /SCN ^{â^'} and anti-counterfeiting. Nanoscale, 2018, 10, 8667-8676.	2.8	62
35	Facile synthesis of ultrathin two-dimensional nanosheets-constructed MCo ₂ O ₄ (M = Ni, Cu, Zn) nanotubes for efficient photocatalytic oxygen evolution. Nanoscale, 2018, 10, 3871-3876.	2.8	28
36	Constructing two-dimensional CuFeSe ₂ @Au heterostructured nanosheets with an amorphous core and a crystalline shell for enhanced near-infrared light water oxidation. Nanoscale, 2018, 10, 2380-2387.	2.8	19

#	Article	IF	CITATIONS
37	Atomic-scale imaging of the ferrimagnetic/diamagnetic interface in Au-Fe3O4 nanodimers and correlated exchange-bias origin. Nanoscale, 2018, 10, 21499-21508.	2.8	8
38	Photochemical strategies for the green synthesis of ultrathin Au nanosheets using photoinduced free radical generation and their catalytic properties. Nanoscale, 2018, 10, 18805-18811.	2.8	12
39	Narrow bandgap semiconductor decorated wood membrane for high-efficiency solar-assisted water purification. Journal of Materials Chemistry A, 2018, 6, 18839-18846.	5.2	208
40	Formation of porous Cu hydroxy double salt nanoflowers derived from metal–organic frameworks with efficient peroxidase-like activity for label-free detection of glucose. Nanoscale, 2018, 10, 11948-11954.	2.8	34
41	Constructing 2D Nanosheet-Assembled MnCo ₂ O ₄ Nanotubes for Pressure and Colorimetric Dual-Signal Readout Detection of Cancer Cells in Serum Samples. ACS Applied Nano Materials, 2018, 1, 4156-4163.	2.4	23
42	Au ₃ Cu tetrapod nanocrystals: highly efficient and metabolizable multimodality imaging-guided NIR-II photothermal agents. Nanoscale Horizons, 2018, 3, 624-631.	4.1	26
43	Se Atomâ€Induced Synthesis of Concave Spherical Fe ₃ O ₄ @Cu ₂ O Nanocrystals for Highly Efficient MRI–SERS Imagingâ€Guided NIR Photothermal Therapy. Particle and Particle Systems Characterization, 2018, 35, 1800197.	1.2	10
44	Pressure and Fluorescence Dual Signal Readout CuO-NiO/C Heterojunction Nanofibers-Based Nanoplatform for Imaging and Detection of Target Cancer Cells in Blood. ACS Sustainable Chemistry and Engineering, 2018, 6, 9921-9929.	3.2	19
45	Cold nanoparticles and the corresponding filter membrane as chemosensors and adsorbents for dual signal amplification detection and fast removal of mercury(<scp>ii</scp>). Nanoscale, 2017, 9, 3315-3321.	2.8	51
46	Designing of blue, green, and red CsPbX ₃ perovskite-codoped flexible films with water resistant property and elimination of anion-exchange for tunable white light emission. Chemical Communications, 2017, 53, 5400-5403.	2.2	100
47	Soluble Porous Coordination Frameworks Constructed from Inorganic Nanoparticles as Homogenized Heterogeneous Photocatalysts for Suzuki Coupling Reactions under Nearâ€Infrared Light. Chemistry - A European Journal, 2017, 23, 8879-8885.	1.7	12
48	Photocatalysis-Based Nanoprobes Using Noble Metal–Semiconductor Heterostructure for Visible Light-Driven in Vivo Detection of Mercury. Analytical Chemistry, 2017, 89, 7649-7658.	3.2	32
49	A g-C ₃ N ₄ /rGO nanocomposite as a highly efficient metal-free photocatalyst for direct C–H arylation under visible light irradiation. RSC Advances, 2017, 7, 46132-46138.	1.7	28
50	Gram-scale synthesis of aligned C ₃ N ₄ –polypyrrole heterojunction aerogels with tunable band structures as efficient visible and near infrared light-driven metal-free photocatalysts. Journal of Materials Chemistry A, 2017, 5, 24920-24928.	5.2	36
51	Efficient Hydrogen-Generation CuO/Co ₃ O ₄ Heterojunction Nanofibers for Sensitive Detection of Cancer Cells by Portable Pressure Meter. Analytical Chemistry, 2017, 89, 8140-8147.	3.2	63
52	Interface coassembly of mesoporous MoS ₂ based-frameworks for enhanced near-infrared light driven photocatalysis. Chemical Communications, 2016, 52, 6431-6434.	2.2	38
53	3D MoS ₂ Composition Aerogels as Chemosensors and Adsorbents for Colorimetric Detection and High-Capacity Adsorption of Hg ²⁺ . ACS Sustainable Chemistry and Engineering, 2016, 4, 3398-3408.	3.2	132
54	Green synthesis and characterization of gold nanoparticles embedded into magnetic carbon nanocages and their highly efficient degradation of methylene blue. RSC Advances, 2016, 6, 28774-28780.	1.7	16

#	Article	IF	CITATIONS
55	Rational synthesis of Pd nanoparticle-embedded reduced graphene oxide frameworks with enhanced selective catalysis in water. Nanoscale, 2016, 8, 2787-2794.	2.8	26
56	White emission magnetic nanoparticles as chemosensors for sensitive colorimetric and ratiometric detection, and degradation of ClO ^{â^²} and SCN ^{â^²} in aqueous solutions based on a logic gate approach. Nanoscale, 2015, 7, 11712-11719.	2.8	26
57	Size- and shape-dependent peroxidase-like catalytic activity of MnFe ₂ O ₄ Nanoparticles and their applications in highly efficient colorimetric detection of target cancer cells. Dalton Transactions, 2015, 44, 12871-12877.	1.6	76
58	Coordinated assembly of a new 3D mesoporous Fe ₃ O ₄ @Cu ₂ O–graphene oxide framework as a highly efficient and reusable catalyst for the synthesis of quinoxalines. Chemical Communications, 2015, 51, 5069-5072.	2.2	30
59	A simple route to CoFe ₂ O ₄ nanoparticles with shape and size control and their tunable peroxidase-like activity. RSC Advances, 2015, 5, 10632-10640.	1.7	59
60	Triple-Emitting Dumbbell Fluorescent Nanoprobe for Multicolor Detection and Imaging Applications. Inorganic Chemistry, 2015, 54, 7725-7734.	1.9	16
61	An atom-scale interfacial coordination strategy to prepare hierarchically porous Fe ₃ O ₄ –graphene frameworks and their application in charge and size selective dye removal. Chemical Communications, 2015, 51, 14405-14408.	2.2	36
62	Pd nanoparticles encapsulated in magnetic carbon nanocages: an efficient nanoenzyme for the selective detection and multicolor imaging of cancer cells. Nanoscale, 2015, 7, 14393-14400.	2.8	16
63	A high-performance imaging probe with NIR luminescence and synergistically enhanced T ₁ –T ₂ relaxivity for in vivo hepatic tumor targeting and multimodal imaging. Chemical Communications, 2015, 51, 13369-13372.	2.2	18
64	A strongly coupled Au/Fe ₃ O ₄ /GO hybrid material with enhanced nanozyme activity for highly sensitive colorimetric detection, and rapid and efficient removal of Hg ²⁺ in aqueous solutions. Nanoscale, 2015, 7, 8495-8502.	2.8	138
65	Highly efficient degradation of organic dyes by palladium nanoparticles decorated on 2D magnetic reduced graphene oxide nanosheets. Dalton Transactions, 2015, 44, 9193-9199.	1.6	80
66	Highly efficient and selective degradation of methylene blue from mixed aqueous solution by using monodisperse CuFe ₂ O ₄ nanoparticles. RSC Advances, 2015, 5, 73327-73332.	1.7	22
67	Europium(<scp>iii</scp>) complex-functionalized magnetic nanoparticle as a chemosensor for ultrasensitive detection and removal of copper(<scp>ii</scp>) from aqueous solution. Nanoscale, 2014, 6, 11473-11478.	2.8	24
68	An off-on fluorescent sensor with high selectivity and sensitivity for Fe(III). Journal of Coordination Chemistry, 2014, 67, 921-928.	0.8	16
69	Controlled synthesis of MnFe2O4 nanoparticles and Gd complex-based nanocomposites as tunable and enhanced T1/T2-weighted MRI contrast agents. Journal of Materials Chemistry B, 2014, 2, 4748.	2.9	45
70	Multifunctional Fe3O4 nanoparticles for highly sensitive detection and removal of Al(iii) in aqueous solution. Nanoscale, 2013, 5, 1552.	2.8	34
71	8-hydroxyquinoline-5-carbaldehyde-(benzotriazol-1'-acetyl)hydrazone as a potential Mg ²⁺ fluorescent chemosensor. Journal of Coordination Chemistry, 2013, 66, 300-305.	0.8	17
72	A one-step method to produce graphene–Fe ₃ O ₄ composites and their excellent catalytic activities for three-component coupling of aldehyde, alkyne and amine. Journal of Materials Chemistry A, 2013, 1, 651-656.	5.2	85

#	Article	IF	CITATIONS
73	A multifunctional nanoprobe based on Au–Fe3O4 nanoparticles for multimodal and ultrasensitive detection of cancer cells. Chemical Communications, 2013, 49, 4938.	2.2	60
74	Coupling of Luminescent Terbium Complexes to Fe ₃ O ₄ Nanoparticles for Imaging Applications. Angewandte Chemie - International Edition, 2011, 50, 3063-3066.	7.2	62
75	Selective Detection of Iron(III) by Rhodamineâ€Modified Fe ₃ O ₄ Nanoparticles. Angewandte Chemie - International Edition, 2010, 49, 4576-4579.	7.2	220
76	Dumbbell-like Auâ^'Fe ₃ O ₄ Nanoparticles for Target-Specific Platin Delivery. Journal of the American Chemical Society, 2009, 131, 4216-4217.	6.6	378
77	pH Controlled Release of Chromone from Chromone-Fe ₃ O ₄ Nanoparticles. Journal of the American Chemical Society, 2008, 130, 14436-14437.	6.6	159