
Leny Yuliati

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7947302/publications.pdf Version: 2024-02-01

Ι ένν Υμιματι

#	Article	IF	CITATIONS
1	Photocatalytic degradation of phenol over carbon nitrides prepared by urea and melamine precursors. AIP Conference Proceedings, 2021, , .	0.3	0
2	Spectroscopy Study of Honey Pineapple Peels Extracted in Different Solvents. Indonesian Journal of Natural Pigments, 2021, 3, 32-35.	0.4	0
3	Effect of Calcination Temperature on the Photocatalytic Activity of Zn2Ti3O8 Materials for Phenol Photodegradation. Bulletin of Chemical Reaction Engineering and Catalysis, 2021, 16, 196-204.	0.5	2
4	Activity Enhancement of P25 Titanium Dioxide by Zinc Oxide for Photocatalytic Phenol Degradation. Bulletin of Chemical Reaction Engineering and Catalysis, 2021, 16, 310-319.	0.5	0
5	Novel luminescent Schiff's base derivative with an azo moiety for ultraselective and sensitive chemosensor of Fe ³⁺ ions. Luminescence, 2021, 36, 1239-1248.	1.5	5
6	High photocatalytic activity of zinc metatitanate materials for phenol photodegradation. IOP Conference Series: Materials Science and Engineering, 2021, 1143, 012076.	0.3	0
7	Improved Visible Light Activity of Copper Oxide/Carbon Nitride Photocatalysts Prepared by Photodeposition for Phenol Degradation. IOP Conference Series: Materials Science and Engineering, 2021, 1143, 012075.	0.3	1
8	Temperature-Dependent X-Ray Studies of Discotic Hexagonal Columnar Mesophases in Trinuclear Gold(I) Pyrazolate Complex. Malaysian Journal of Fundamental and Applied Sciences, 2021, 17, 285-294.	0.4	0
9	The Role of a Nitro Substituent in C â€Phenylcalix[4]resorcinarenes to Enhance the Adsorption of Gold(III) Ions. ChemistrySelect, 2021, 6, 5366-5373.	0.7	3
10	A Fluorescence Study on the Extracts of Red Dragon Fruit Peel in Various Solvents. Indonesian Journal of Natural Pigments, 2021, 3, 48.	0.4	0
11	Detection of triethylamine on supramolecular 3-[(E)-(4- acetylphenyl)diazenyl]-4-hydroxybenzaldehyde compound. AIP Conference Proceedings, 2021, , .	0.3	0
12	Curcumin-Loaded Nanoemulsion for Better Cellular Permeation. Scientia Pharmaceutica, 2020, 88, 44.	0.7	23
13	Crystalline carbon nitride for photocatalytic phenol degradation: Effect of precursor and salt melt amounts. AIP Conference Proceedings, 2020, , .	0.3	0
14	Methyl red dye-sensitized zinc oxide as photocatalyst for phenol degradation under visible light. AIP Conference Proceedings, 2020, , .	0.3	3
15	Isolation and Optical Properties of Natural Pigments from Purple Mangosteen Peels. IOP Conference Series: Materials Science and Engineering, 2020, 833, 012018.	0.3	9
16	Zinc Oxide with Visible Light Photocatalytic Activity Originated from Oxygen Vacancy Defects. IOP Conference Series: Materials Science and Engineering, 2020, 833, 012080.	0.3	1
17	Acetylacetone as A Potential Chemosensor for Rapid Detection of Cu(II) in Aqueous Media. IOP Conference Series: Materials Science and Engineering, 2020, 833, 012027.	0.3	2
18	Synthesis and characterizations of C-3-Nitrophenylcalix[4]resorcinarene as a potential chemosensor for La(III) ions. IOP Conference Series: Materials Science and Engineering, 2020, 959, 012014.	0.3	4

#	Article	IF	CITATIONS
19	Copper oxide modification to improve the photocatalytic activity of titanium dioxide nanoparticles: P25 versus P90. IOP Conference Series: Materials Science and Engineering, 2020, 902, 012010.	0.3	2
20	Functionalization of titanium dioxide through dye-sensitizing method utilizing red amaranth extract for phenol photodegradation. IOP Conference Series: Materials Science and Engineering, 2020, 902, 012029.	0.3	8
21	Improving the Performance of Zinc Oxide Photocatalysts for Phenol Degradation through Addition of Lanthanum Species. Jurnal Kimia Sains Dan Aplikasi, 2020, 23, 109-116.	0.1	0
22	Optimization of Reduced GO-Based Cotton Electrodes for Wearable Electrocardiography. IEEE Sensors Journal, 2020, 20, 7774-7782.	2.4	12
23	High Antioxidant Activity of Pucuk Merah (Syzygium oleina) Leaf and Zinnia (Zinnia elegans) Flower Extracts. Indonesian Journal of Natural Pigments, 2020, 2, 54.	0.4	1
24	Selection of Maceration Solvent for Natural Pigment Extraction from Red Fruit (Pandanus conoideus) Tj ETQq0 0	0 rgBT /O	verlock 10 Tf

25	Optimized Synthesis Temperature and Time to Obtain Crystalline Carbon Nitride with Enhanced Photocatalytic Activity for Phenol Degradation. Indonesian Journal of Chemistry, 2020, 20, 1392.	0.3	2
26	Preparation of Green-Emissive Zinc Oxide Composites Using Natural Betacyanin Pigment Isolated from Red Dragon Fruit. Indonesian Journal of Chemistry, 2020, 21, 57.	0.3	0
27	Supramolecular design of Benzene-1,3,5-Tricarboxamide with Hydrophobic Alkyl side chains toward long-range liquid crystalline properties. Journal of Physics: Conference Series, 2019, 1282, 012068.	0.3	1
28	Highly ordered mesoporous silica film nanocomposites containing gold nanoparticles for the catalytic reduction of 4-nitrophenol. Beilstein Journal of Nanotechnology, 2019, 10, 1368-1379.	1.5	8
29	Photocatalytic degradation of aromatic organic pollutants: bulk versus mesoporous carbon nitride. Materials Today: Proceedings, 2019, 7, 697-703.	0.9	3
30	Fluorescence study of 5-nitroisatin Schiff base immobilized on SBA-15 for sensing Fe3+. Open Chemistry, 2019, 17, 438-447.	1.0	6
31	Tuning the stability of red color natural pigments in fruit extracts by pH control. Journal of Physics: Conference Series, 2019, 1282, 012070.	0.3	1
32	Response surface methodology to optimize the performance of reduced graphene oxide-mesoporous carbon nitride photocatalysts. Materials Research Express, 2019, 6, 074004.	0.8	0
33	Comparison study on molybdena-titania supported on TUD-1 and TUD-C synthesized via sol-gel templating method: Properties and catalytic performance in olefins epoxidation. Materials Research Express, 2019, 6, 074001.	0.8	3
34	Luminescent group 11 3, 5-dimethyl pyrazolate complexes/titanium oxide composites for photocatalytic removal and degradation of 2, 4-dichlorophenoxyacetic acid. Materials Research Express, 2019, 6, 064001.	0.8	0
35	Selective optical chemosensors of Fe3+ ions using 1H-indole-2,3-dione. AIP Conference Proceedings, 2019, , .	0.3	2
	Selective betalain impregnation from red amaranth extract onto titanium dioxide nanoparticles. AIP		

Conference Proceedings, 2019, , . 36 ppa 0.3 3

#	Article	IF	CITATIONS
37	Designed Mesoporous Materials toward Multifunctional Organic Silica Nanocomposites. , 2019, , .		1
38	Kinetics and Optimization Studies of Photocatalytic Degradation of Methylene Blue over Cr-Doped TiO2 using Response Surface Methodology. Iranian Journal of Science and Technology, Transaction A: Science, 2019, 43, 95-103.	0.7	21
39	Synthesis of highly active crystalline carbon nitride prepared in various salt meltsfor photocatalytic degradation of phenol. Turkish Journal of Chemistry, 2019, 43, 63-72.	0.5	5
40	Red Pigmented Natural Extract as Potential Organic UV Filter and Its Use in Combination with ZnO as Sunscreen Cream. , 2019, , .		0
41	Effects of pH and Storage Time on the Stability of Papaya and Carrot Extracts. Indonesian Journal of Natural Pigments, 2019, 1, 25.	0.4	1
42	Validation of TLC densitometry method for the quantitative determination of alkaloid in fermented endophytic fungi extract Phyllantus niruri Linn. Pharmaciana, 2019, 9, 47.	0.2	0
43	Systematic Study of Calcination Temperature on Photocatalytic Activity of Luminescent Copper(l) Pyrazolate Complex/Titanium Oxide Composites. Journal of the Indonesian Chemical Society, 2019, 2, 54.	0.3	1
44	Supramolecular assembly of group 11 phosphorescent metal complexes for chemosensors of alcohol derivatives. IOP Conference Series: Materials Science and Engineering, 2018, 349, 012023.	0.3	0
45	Effect of preparation methods on the activity of titanium dioxide-carbon nitride composites for photocatalytic degradation of salicylic acid. IOP Conference Series: Materials Science and Engineering, 2018, 349, 012033.	0.3	1
46	Molecular Self-Assembly of Group 11 Pyrazolate Complexes as Phosphorescent Chemosensors for Detection of Benzene. IOP Conference Series: Materials Science and Engineering, 2018, 299, 012029.	0.3	3
47	PHOTOCATALYTIC REMOVAL OF PHENOL OVER MESOPOROUS ZnO/TiO2 COMPOSITES. Jurnal Teknologi (Sciences and Engineering), 2018, 80, .	0.3	5
48	Size-exclusion liquid chromatography for effective purification of amphiphilic trinuclear gold(I) pyrazolate complex. Malaysian Journal of Fundamental and Applied Sciences, 2018, 14, 133-137.	0.4	1
49	Highly efficient zinc oxide-carbon nitride composite photocatalysts for degradation of phenol under UV and visible light irradiation. Malaysian Journal of Fundamental and Applied Sciences, 2018, 14, 159-163.	0.4	5
50	Photocatalytic oxidation of nitrite ion over carbon nitride. Malaysian Journal of Fundamental and Applied Sciences, 2018, 14, 174-178.	0.4	1
51	Role of heterojunction ZrTiO 4 /ZrTi 2 O 6 /TiO 2 photocatalyst towards the degradation of paraquat dichloride and optimization study by Box–Behnken design. Arabian Journal of Chemistry, 2017, 10, 935-943.	2.3	30
52	Enhanced Detection of Nitrite Ions Over Copper Acetylacetonate/Polymeric Carbon Nitride Composites. Macromolecular Symposia, 2017, 371, 84-93.	0.4	7
53	Carbon rod of zinc-carbon primary battery waste as a substrate for CdS and TiO2 photocatalyst layer for visible light driven photocatalytic hydrogen production. Journal of Environmental Chemical Engineering, 2017, 5, 2251-2258.	3.3	15
54	Photocatalytic synthesis of reduced graphene oxide-zinc oxide: Effects of light intensity and exposure time. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 340, 128-135.	2.0	26

#	Article	IF	CITATIONS
55	Fluorescence Sensing of Nitrite Ions on Polyvinylpyrrolidone/Zinc Oxide Composites Prepared by Impregnation Method. IOP Conference Series: Materials Science and Engineering, 2017, 202, 012086.	0.3	0
56	Role of lanthanum species in improving the photocatalytic activity of titanium dioxide. Catalysis Science and Technology, 2017, 7, 159-167.	2.1	16
57	Photocatalytic degradation of photosensitizing and non-photosensitizing dyes over chromium doped titania photocatalysts under visible light. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 332, 215-223.	2.0	37
58	Thermal hydrogen reduction for preservation of mesoporous silica film nanocomposites with a hexagonal structure containing amphiphilic triphenylene. AIP Conference Proceedings, 2017, , .	0.3	0
59	Improving the activity of rutile titanium dioxide with reduced graphene oxide. AIP Conference Proceedings, 2017, , .	0.3	0
60	Fabrication of Mesoporous Silica/Alumina Hybrid Membrane Film Nanocomposites using Template Sol-Gel Synthesis of Amphiphilic Triphenylene. IOP Conference Series: Materials Science and Engineering, 2017, 202, 012003.	0.3	3
61	High photocatalytic activity of Fe ₂ O ₃ /TiO ₂ nanocomposites prepared by photodeposition for degradation of 2,4-dichlorophenoxyacetic acid. Beilstein Journal of Nanotechnology, 2017, 8, 915-926.	1.5	47
62	Supramolecular Phosphorescent Trinuclear Copper(I) Pyrazolate Complexes for Vapochromic Chemosensors of Ethanol. Indonesian Journal of Chemistry, 2017, 17, 191.	0.3	5
63	Cobalt Oxide-Modified Titanium Dioxide Nanoparticle Photocatalyst for Degradation of 2,4-Dichlorophenoxyacetic Acid. Indonesian Journal of Chemistry, 2017, 17, 284.	0.3	7
64	High photocatalytic activity of mixed anatase-rutile phases on commercial TiO ₂ nanoparticles. IOP Conference Series: Materials Science and Engineering, 2016, 107, 012005.	0.3	48
65	Phenol photocatalytic degradation over mesoporous TUD-1-supported chromium oxide-doped titania photocatalyst. Chinese Journal of Catalysis, 2016, 37, 1871-1881.	6.9	14
66	Photocatalytic removal of phenol over titanium dioxide- reduced graphene oxide photocatalyst. IOP Conference Series: Materials Science and Engineering, 2016, 107, 012001.	0.3	9
67	Photocatalyst Composites of Luminescent Trinuclear Copper(I) Pyrazolate Complexes/Titanium Oxide for Degradation of 2,4-Dichlorophenoxyacetic Acid. Materials Science Forum, 2016, 846, 697-701.	0.3	2
68	Enhanced adsorption of acetylsalicylic acid over hydrothermally synthesized iron oxide-mesoporous silica MCM-41 composites. Journal of the Taiwan Institute of Chemical Engineers, 2016, 65, 591-598.	2.7	32
69	Preparation and characterization of In and Cu co-doped ZnS photocatalysts for hydrogen production under visible light irradiation. Journal of Energy Chemistry, 2016, 25, 512-516.	7.1	31
70	Photocatalytic removal of 2,4-dichlorophenoxyacetic acid herbicide on copper oxide/titanium dioxide prepared by co-precipitation method. IOP Conference Series: Materials Science and Engineering, 2016, 107, 012012.	0.3	9
71	Mesostructured TUD-C supported molybdena doped titania as high selective oxidative catalyst for olefins epoxidation at ambient condition. Microporous and Mesoporous Materials, 2016, 225, 411-420.	2.2	16
72	Masking effect of copper oxides photodeposited on titanium dioxide: exploring UV, visible, and solar light activity. Catalysis Science and Technology, 2016, 6, 5079-5087.	2.1	20

#	Article	IF	CITATIONS
73	Detection of nitrite and nitrate ions in water by graphene oxide as a potential fluorescence sensor. IOP Conference Series: Materials Science and Engineering, 2016, 107, 012027.	0.3	8
74	ENHANCED ACTIVITY OF C3N4 WITH ADDITION OF ZnO FOR PHOTOCATALYTIC REMOVAL OF PHENOL UNDER VISIBLE LIGHT. Malaysian Journal of Analytical Sciences, 2016, 20, 102-110.	0.2	7
75	MODIFICATION OF TITANIUM DIOXIDE NANOPARTICLES WITH COPPER OXIDE CO-CATALYST FOR PHOTOCATALYTIC DEGRADATION OF 2,4-DICHLOROPHENOXYACETIC ACID. Malaysian Journal of Analytical Sciences, 2016, 20, 171-178.	0.2	9
76	POLYVINYLPYRROLIDONE AS A NEW FLUORESCENT SENSOR FOR NITRATE ION. Malaysian Journal of Analytical Sciences, 2016, 20, 288-285.	0.2	8
77	Enhanced Photocatalytic Performance of Copper-Modified Titanium Dioxide Prepared by UV Reduction Method. Advanced Materials Research, 2015, 1112, 180-183.	0.3	5
78	Preparation of High Activity Ga and Cu Doped ZnS by Hydrothermal Method for Hydrogen Production under Visible Light Irradiation. Journal of Nanomaterials, 2015, 2015, 1-9.	1.5	21
79	Mesoporous carbon nitride as a metal-free catalyst for the removal of aniline. RSC Advances, 2015, 5, 44578-44586.	1.7	8
80	Increasing Rutile Phase Amount in Chromium-Doped Titania by Simple Stirring Approach for Photodegradation of Methylene Blue under Visible Light. Australian Journal of Chemistry, 2015, 68, 1129.	0.5	9
81	Photocatalytic Removal of 2,4-D Herbicide on Lanthanum Oxide-Modified Titanium Dioxide. Advanced Materials Research, 2015, 1112, 168-171.	0.3	2
82	Influence of Zirconium Doped Titanium Oxide towards Photocatalytic Activity of Paraquat. Advanced Materials Research, 2015, 1107, 377-382.	0.3	7
83	Reduced Graphene Oxide-Mesoporous Carbon Nitride as Photocatalyst for Removal of N-Nitrosopyrrolidine. Advanced Materials Research, 2015, 1112, 184-187.	0.3	1
84	Improved interfacial charge transfer and visible light activity of reduced graphene oxide–graphitic carbon nitride photocatalysts. RSC Advances, 2015, 5, 94029-94039.	1.7	33
85	Photocatalytic Oxidation of Hexanol over Titanium Dioxide Supported on Mesoporous Silica. Advanced Materials Research, 2015, 1112, 176-179.	0.3	1
86	FABRICATED METAL-FREE CARBON NITRIDE CHARACTERIZATIONS FOR FLUORESCENCE CHEMICAL SENSOR OF NITRATE IONS. Jurnal Teknologi (Sciences and Engineering), 2015, 76, .	0.3	5
87	Preparation of highly active zinc oxide for photocatalytic removal of phenol: Direct calcination versus co-precipitation method. Malaysian Journal of Fundamental and Applied Sciences, 2015, 11, .	0.4	1
88	Effect of calcination temperatures on the photocatalytic activities of commercial titania nanoparticles under solar simulator irradiation. Malaysian Journal of Fundamental and Applied Sciences, 2015, 11, .	0.4	1
89	Study on quenching effect of nitrite ions on zinc oxide modified by polyvinylpyrrolidone. Malaysian Journal of Fundamental and Applied Sciences, 2015, 11, .	0.4	0
90	Correlation of fluorescence and photocatalytic activity of Co-doped TiO2. Malaysian Journal of Fundamental and Applied Sciences, 2015, 11, .	0.4	0

#	Article	IF	CITATIONS
91	Photocatalytic removal of cyclohexane on visible light-driven gallium oxide/carbon nitride composites prepared by impregnation method. Malaysian Journal of Fundamental and Applied Sciences, 2015, 11, .	0.4	0
92	Improved photocatalytic activity of anatase titanium dioxide by reduced graphene oxide. Malaysian Journal of Fundamental and Applied Sciences, 2015, 11, .	0.4	0
93	High activity of Ag-doped Cd _{0.1} Zn _{0.9} S photocatalyst prepared by the hydrothermal method for hydrogen production under visible-light irradiation. Beilstein Journal of Nanotechnology, 2014, 5, 587-595.	1.5	11
94	Effect of Transition Metal Oxide Doping (Cr, Co, V) in the Photocatalytic Activity of TiO2 for Congo Red Degradation under Visible Light. Jurnal Teknologi (Sciences and Engineering), 2014, 69, .	0.3	5
95	Preparation of iron (III) oxide nanoparticles using a mesoporous carbon nitride template for photocatalytic phenol removal. Materials Research Innovations, 2014, 18, S6-465-S6-469.	1.0	2
96	Simple and Low-Cost Preparation of Carbon-Coated Titanium Dioxide via Hydrothermal Method. Advanced Materials Research, 2014, 970, 279-282.	0.3	1
97	Mesoporous carbon nitride for adsorption and fluorescence sensor of N-nitrosopyrrolidine. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2014, 124, 357-364.	2.0	22
98	Photocatalytic removal of phenol under visible light irradiation on zinc phthalocyanine/mesoporous carbon nitride nanocomposites. Journal of Experimental Nanoscience, 2014, 9, 78-86.	1.3	12
99	Phosphorescent sensing and imaging of temperature using mesoporous silica/gold nanocomposites. Materials Research Innovations, 2014, 18, S6-444-S6-448.	1.0	8
100	Photocatalytic hydrogen production of Ta3N5 nanoparticles prepared at different nitridation temperatures. Materials Research Innovations, 2014, 18, S6-439-S6-443.	1.0	1
101	Cr Doped TiO2 Supported on TUD-1 Photocatalyst for Dye Photodegradation. Jurnal Teknologi (Sciences and Engineering), 2014, 69, .	0.3	3
102	Thermal Hydrogen Reduction for Synthesis of Gold Nanoparticles in the Nanochannels of Mesoporous Silica Composite. Jurnal Teknologi (Sciences and Engineering), 2014, 70, .	0.3	7
103	Synthesis of Tungsten Oxide as Visible Light-Driven Photocatalyst for Removal of Salicylic Acid. Malaysian Journal of Fundamental and Applied Sciences, 2014, 7, .	0.4	0
104	Liquid–gas boundary catalysis by using gold/polystyrene-coated hollow titania. Journal of Colloid and Interface Science, 2013, 394, 490-497.	5.0	3
105	A new way to control the coordination of titanium (Ⅳ) in the sol–gel synthesis of broom fibers-like mesoporous alkyl silica–titania catalyst through addition of water. Chemical Engineering Journal, 2013, 222, 23-31.	6.6	12
106	Photocatalytic removal of phenol under visible light irradiation on zinc phthhalocyanine/mesoporous carbon nitride. , 2012, , .		0
107	Modification of Tantalum (V) Nitride with zirconium oxide for photocatalytic hydrogen production under visible light irradiation. , 2012, , .		0
108	Improvement of catalytic activity in styrene oxidation of carbon-coated titania by formation of porous carbon layer. Chemical Engineering Journal, 2012, 209, 486-493.	6.6	20

#	Article	IF	CITATIONS
109	A Urea Precursor to Synthesize Carbon Nitride with Mesoporosity for Enhanced Activity in the Photocatalytic Removal of Phenol. Chemistry - an Asian Journal, 2012, 7, 2139-2144.	1.7	119
110	Preparation of Cu-doped Cd0.1Zn0.9S solid solution by hydrothermal method and its enhanced activity for hydrogen production under visible light irradiation. Journal of Photochemistry and Photobiology A: Chemistry, 2012, 230, 15-22.	2.0	26
111	Synthesis and Characterization of Zinc Phthalocyanine/Mesoporous Carbon Nitride Nanocomposites. Advanced Materials Research, 2011, 364, 363-367.	0.3	2
112	Photocatalytic hydrogen production under visible light over Cd0.1SnxZn0.9â^'2xS solid solution photocatalysts. International Journal of Hydrogen Energy, 2011, 36, 9453-9461.	3.8	47
113	Preparation and Characterizations of In _{<i>0.1</i>} Sn _{<i>x</i>} Zn _{<i>0.85-2x</i>} S Powder Photocatalysts for Hydrogen Production under Visible Light Irradiation. Advanced Materials Research, 2011, 364, 238-242.	0.3	1
114	Simple, Low-cost Preparation of High Surface Area Co3O4–CeO2 Catalysts for Total Decomposition of Toluene. Chemistry Letters, 2010, 39, 26-27.	0.7	3
115	Highly active tantalum(v) nitride nanoparticles prepared from a mesoporous carbon nitride template for photocatalytic hydrogen evolution under visible light irradiation. Journal of Materials Chemistry, 2010, 20, 4295.	6.7	122
116	Enhanced activity of Tantalum (V) nitride nanoparticles for toluene decomposition under visible light irradiation. , 2010, , .		0
117	Formation of germanium nanoparticles in silica glass studied by optical absorption and X-ray absorption fine structure analysis. Nuclear Instruments & Methods in Physics Research B, 2009, 267, 1368-1371.	0.6	2
118	Clustering of germanium atoms in silica glass responsible for the 3.1eV emission band studied by optical absorption and X-ray absorption fine structure analysis. Journal of Nuclear Materials, 2009, 386-388, 1010-1013.	1.3	2
119	Photocatalytic conversion of methane and carbon dioxide over gallium oxide. Chemical Physics Letters, 2008, 452, 178-182.	1.2	130
120	Photocatalytic nonoxidative coupling of methane on gallium oxide and silica-supported gallium oxide. Journal of Catalysis, 2008, 257, 396-402.	3.1	88
121	Photocatalytic conversion of methane. Chemical Society Reviews, 2008, 37, 1592.	18.7	310
122	Nonoxidative Coupling of Methane over Supported Ceria Photocatalysts. Journal of Physical Chemistry C, 2008, 112, 7223-7232.	1.5	43
123	Photocatalytic Direct Conversion of Methane on Silica-Titania Catalysts. Studies in Surface Science and Catalysis, 2007, 172, 457-460.	1.5	7
124	Modification of Highly Dispersed Cerium Oxides on Silica with Highly Dispersed Titanium Oxides as a New Photocatalyst Design for Nonoxidative Direct Methane Coupling. Chemistry Letters, 2006, 35, 932-933.	0.7	11
125	Photoactive sites on pure silica materials for nonoxidative direct methane coupling. Journal of Catalysis, 2006, 238, 214-220.	3.1	51
126	Preparation of isolated highly dispersed titanium oxides on silica by sol-gel method for photocatalytic non-oxidative direct methane coupling. Studies in Surface Science and Catalysis, 2006, 162, 961-968.	1.5	10

#	Article	IF	CITATIONS
127	Highly dispersed cerium and titanium oxides on silica prepared by impregnation method for photocatalytic non-oxidative direct methane coupling. Studies in Surface Science and Catalysis, 2006, 162, 1025-1032.	1.5	1
128	Highly dispersed magnesium oxide species on silica as photoactive sites for photoinduced direct methane coupling and photoluminescence. Physical Chemistry Chemical Physics, 2005, 7, 195.	1.3	54
129	Highly dispersed Ce(iii) species on silica and alumina as new photocatalysts for non-oxidative direct methane coupling. Chemical Communications, 2005, , 4824.	2.2	50
130	Valence of Highly Dispersed Cerium Oxide Species on Silica Quantitatively Estimated by Ce L _{III} -edge XANES. Materials Transactions, 2004, 45, 2062-2067.	0.4	11
131	Synthesis of Mesoporous Silica Nanocomposites for Preparation of Gold Nanoparticles. Advanced Materials Research, 0, 925, 233-237.	0.3	11
132	Adsorption of Aniline Using Novel Mesoporous Carbon Nitride. Advanced Materials Research, 0, 925, 135-139.	0.3	2
133	Supramolecular Hydrogen Bonding Interactions of Novel 1,3,5-Benzenetricarbonyl Trisubstituted Alkyl for Anion Sensor Applications. Advanced Materials Research, 0, 925, 228-232.	0.3	4
134	Highly Active Mesoporous Carbon Nitride for Removal of Aromatic Organic Pollutants under Visible Light Irradiation. Advanced Materials Research, 0, 925, 130-134.	0.3	3
135	Vapochromic Copper (I) Pyrazolate Complex Materials for Phosphorescent Chemosensors of Ethanol. Advanced Materials Research, 0, 970, 44-47.	0.3	8
136	Synergetic Effect of In and Ag Co-Doped ZnS for Enhanced Photocatalytic Hydrogen Evolution under Visible Light Irradiation. Advanced Materials Research, 0, 1024, 368-371.	0.3	4
137	Photocatalytic Hydrogen Production from Water on Ga, Sn-Doped ZnS under Visible Light Irradiation. Advanced Materials Research, 0, 925, 200-204.	0.3	0
138	Photodegradation of Methylene Blue over Cr Doped TiO ₂ and Cr Doped TiO ₂ Supported TUD-1 Photocatalysts. Advanced Materials Research, 0, 1109, 424-428.	0.3	2
139	Discovering anticancer compound of ethyl acetate extract from RL1 code endophytic fungi culture derived by <i>Phyllanthus niruri</i> Linn leaves through cell cycle modulation in T47d cells. IOP Conference Series: Materials Science and Engineering, 0, 509, 012157.	0.3	5
140	A narrative review of curcuminoids from various Curcuma species in Indonesia as potential antidiabetic agents. Longhua Chinese Medicine, 0, 4, 23-23.	0.5	0