Peter D Clift

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/794714/publications.pdf Version: 2024-02-01

	26630	34986
11,280	56	98
citations	h-index	g-index
211	211	7059
docs citations	times ranked	citing authors
	11,280 citations 211 docs citations	11,28056citationsh-index211211docs citations111times ranked

#	Article	IF	CITATIONS
1	Correlation of Himalayan exhumation rates and Asian monsoon intensity. Nature Geoscience, 2008, 1, 875-880.	12.9	604
2	Ages and magnetic structures of the South China Sea constrained by deep tow magnetic surveys and IODP Expedition 349. Geochemistry, Geophysics, Geosystems, 2014, 15, 4958-4983.	2.5	419
3	Reconstructing chemical weathering, physical erosion and monsoon intensity since 25Ma in the northern South China Sea: A review of competing proxies. Earth-Science Reviews, 2014, 130, 86-102.	9.1	402
4	Development of the East Asian monsoon: Mineralogical and sedimentologic records in the northern South China Sea since 20ÂMa. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 254, 561-582.	2.3	366
5	Controls on the erosion of Cenozoic Asia and the flux of clastic sediment to the ocean. Earth and Planetary Science Letters, 2006, 241, 571-580.	4.4	361
6	Palaeogeographic and palaeotectonic evolution of the Eastern Mediterranean Neotethys. Palaeogeography, Palaeoclimatology, Palaeoecology, 1991, 87, 289-343.	2.3	335
7	Fluvial landscapes of the Harappan civilization. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E1688-94.	7.1	239
8	Pre-Miocene birth of the Yangtze River. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 7556-7561.	7.1	235
9	The sedimentary and tectonic evolution of the Yinggehai-Song Hong basin and the southern Hainan margin, South China Sea: Implications for Tibetan uplift and monsoon intensification. Journal of Geophysical Research, 2006, 111, n/a-n/a.	3.3	208
10	Zircon U-Pb and Hf isotopic constraints on the onset time of India-Asia collision. Numerische Mathematik, 2014, 314, 548-579.	1.4	203
11	Past East Asian monsoon evolution controlled by paleogeography, not CO ₂ . Science Advances, 2019, 5, eaax1697.	10.3	192
12	Development of the Indus Fan and its significance for the erosional history of the Western Himalaya and Karakoram. Bulletin of the Geological Society of America, 2001, 113, 1039-1051.	3.3	185
13	Large-scale drainage capture and surface uplift in eastern Tibet–SW China before 24 Ma inferred from sediments of the Hanoi Basin, Vietnam. Geophysical Research Letters, 2006, 33, .	4.0	183
14	Crustal redistribution, crust–mantle recycling and Phanerozoic evolution of the continental crust. Earth-Science Reviews, 2009, 97, 80-104.	9.1	179
15	Holocene erosion of the Lesser Himalaya triggered by intensified summer monsoon. Geology, 2008, 36, 79.	4.4	174
16	High-resolution magnetostratigraphic study of the Paleogene-Neogene strata in the Northern Qaidam Basin: Implications for the growth of the Northeastern Tibetan Plateau. Gondwana Research, 2017, 46, 141-155.	6.0	167
17	Recent morphodynamics of the Indus delta shore and shelf. Continental Shelf Research, 2006, 26, 1668-1684.	1.8	160
18	Late Oligocene–early Miocene birth of the Taklimakan Desert. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 7662-7667.	7.1	158

#	Article	IF	CITATIONS
19	Seismic stratigraphy of the central South China Sea basin and implications for neotectonics. Journal of Geophysical Research: Solid Earth, 2015, 120, 1377-1399.	3.4	155
20	Reorganization of the western Himalayan river system after five million years ago. Nature, 2005, 438, 1001-1003.	27.8	151
21	Was the Indosinian orogeny a Triassic mountain building or a thermotectonic reactivation event?. Comptes Rendus - Geoscience, 2008, 340, 83-93.	1.2	147
22	Evolution and variability of the Asian monsoon and its potential linkage with uplift of the Himalaya and Tibetan Plateau. Progress in Earth and Planetary Science, 2016, 3, .	3.0	143
23	Rifted margin architecture and crustal rheology: Reviewing Iberia-Newfoundland, Central South Atlantic, and South China Sea. Marine and Petroleum Geology, 2017, 79, 257-281.	3.3	138
24	Petrology of Indus River sands: a key to interpret erosion history of the Western Himalayan Syntaxis. Earth and Planetary Science Letters, 2005, 229, 287-302.	4.4	128
25	Assessing the provenance of loess and desert sediments in northern China using U-Pb dating and morphology of detrital zircons. Bulletin of the Geological Society of America, 2010, 122, 1331-1344.	3.3	126
26	Development of the East Asian summer monsoon: Evidence from the sediment record in the South China Sea since 8.5ÂMa. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 241, 139-159.	2.3	125
27	Evolving east Asian river systems reconstructed by trace element and Pb and Nd isotope variations in modern and ancient Red Riverâ€50ng Hong sediments. Geochemistry, Geophysics, Geosystems, 2008, 9, .	2.5	125
28	Tectonic erosion of the Peruvian forearc, Lima Basin, by subduction and Nazca Ridge collision. Tectonics, 2003, 22, n/a-n/a.	2.8	121
29	Deep sea records of the continental weathering and erosion response to East Asian monsoon intensification since 14ka in the South China Sea. Chemical Geology, 2012, 326-327, 1-18.	3.3	120
30	Provenance discrimination of siliciclastic sediments in the middle Okinawa Trough since 30ka: Constraints from rare earth element compositions. Marine Geology, 2010, 275, 212-220.	2.1	118
31	Clay mineral evolution in the central Okinawa Trough since 28ka: Implications for sediment provenance and paleoenvironmental change. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 288, 108-117.	2.3	117
32	Holocene evolution in weathering and erosion patterns in the Pearl River delta. Geochemistry, Geophysics, Geosystems, 2013, 14, 2349-2368.	2.5	113
33	Nd and Pb isotope variability in the Indus River System: implications for sediment provenance and crustal heterogeneity in the Western Himalaya. Earth and Planetary Science Letters, 2002, 200, 91-106.	4.4	107
34	Human impact overwhelms long-term climate control of weathering and erosion in southwest China. Geology, 2015, 43, 439-442.	4.4	107
35	Seismic volcanostratigraphy of the western Indian rifted margin: The pre-Deccan igneous province. Journal of Geophysical Research, 2011, 116, .	3.3	99
36	Increased contribution of terrigenous supply from Taiwan to the northern South China Sea since 3Ma. Marine Geology, 2010, 278, 115-121.	2.1	95

#	Article	IF	CITATIONS
37	Zircon U–Pb geochronology and Hf isotope data from the Yangtze River sands: Implications for major magmatic events and crustal evolution in Central China. Chemical Geology, 2013, 360-361, 186-203.	3.3	92
38	A revised budget for Cenozoic sedimentary carbon subduction. Reviews of Geophysics, 2017, 55, 97-125.	23.0	88
39	Enhanced silicate weathering of tropical shelf sediments exposed during glacial lowstands: A sink for atmospheric CO2. Geochimica Et Cosmochimica Acta, 2017, 200, 123-144.	3.9	85
40	Sediment provenance, reworking and transport processes in the Indus River by U–Pb dating of detrital zircon grains. Global and Planetary Change, 2011, 76, 33-55.	3.5	84
41	Patterns of extension and magmatism along the continent-ocean boundary, South China margin. Geological Society Special Publication, 2001, 187, 489-510.	1.3	83
42	U-Pb zircon dating evidence for a Pleistocene Sarasvati River and capture of the Yamuna River. Geology, 2012, 40, 211-214.	4.4	83
43	Thermochronology of mineral grains in the Red and Mekong Rivers, Vietnam: Provenance and exhumation implications for Southeast Asia. Geochemistry, Geophysics, Geosystems, 2006, 7, n/a-n/a.	2.5	80
44	Clay mineral variations in Holocene terrestrial sediments from the Indus Basin. Quaternary Research, 2012, 77, 368-381.	1.7	78
45	Climate changes control offshore crustal structure at South China Sea continental margin. Earth and Planetary Science Letters, 2015, 420, 66-72.	4.4	77
46	Spreading dynamics and sedimentary process of the Southwest Sub-basin, South China Sea: Constraints from multi-channel seismic data and IODP Expedition 349. Journal of Asian Earth Sciences, 2016, 115, 97-113.	2.3	76
47	Geochemical evolution of arc magmatism during arc-continent collision, South Mayo, Ireland. Geology, 2001, 29, 543.	4.4	71
48	History of Asian eolian input to the West Philippine Sea over the last one million years. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 326-328, 152-159.	2.3	71
49	Controls on erosion intensity in the Yangtze River basin tracked by U–Pb detrital zircon dating. Earth-Science Reviews, 2014, 136, 121-140.	9.1	69
50	A general model of arc-continent collision and subduction polarity reversal from Taiwan and the Irish Caledonides. Geological Society Special Publication, 2003, 219, 81-98.	1.3	68
51	Evaluating the evolution of the Red River system based on in situ Uâ€Pb dating and Hf isotope analysis of zircons. Geochemistry, Geophysics, Geosystems, 2009, 10, .	2.5	68
52	History of Asian eolian input to the Sea of Japan since 15 Ma: Links to Tibetan uplift or global cooling?. Earth and Planetary Science Letters, 2017, 474, 296-308.	4.4	68
53	Extreme weathering/erosion during the Miocene Climatic Optimum: Evidence from sediment record in the South China Sea. Geophysical Research Letters, 2009, 36, .	4.0	65
54	Arc–continent collision and the formation of continental crust: a new geochemical and isotopic record from the Ordovician Tyrone Igneous Complex, Ireland. Journal of the Geological Society, 2009, 166, 485-500.	2.1	63

#	Article	IF	CITATIONS
55	Sediment fluxes and buffering in the postâ€glacial Indus Basin. Basin Research, 2014, 26, 369-386.	2.7	62
56	Zircon and apatite thermochronology of the Nankai Trough accretionary prism and trench, Japan: Sediment transport in an active and collisional margin setting. Tectonics, 2013, 32, 377-395.	2.8	59
57	History of Yellow River and Yangtze River delivering sediment to the Yellow Sea since 3.5†Ma: Tectonic or climate forcing?. Quaternary Science Reviews, 2019, 216, 74-88.	3.0	56
58	Controls on modern erosion and the development of the Pearl River drainage in the late Paleogene. Marine Geology, 2017, 394, 52-68.	2.1	54
59	Geochemical record of Holocene to Recent sedimentation on the Western Indus continental shelf, Arabian Sea. Geochemistry, Geophysics, Geosystems, 2012, 13, .	2.5	53
60	Tectonic and climatic controls on longâ€ŧerm silicate weathering in Asia since 5 Ma. Geophysical Research Letters, 2012, 39, .	4.0	53
61	Quantitative estimates of Asian dust input to the western Philippine Sea in the midâ€late Quaternary and its potential significance for paleoenvironment. Geochemistry, Geophysics, Geosystems, 2015, 16, 3182-3196.	2.5	50
62	Signal or noise? Isolating grain size effects on Nd and Sr isotope variability in Indus delta sediment provenance. Chemical Geology, 2018, 485, 56-73.	3.3	47
63	Laurentian crustal recycling in the Ordovician Grampian Orogeny: Nd isotopic evidence from western Ireland. Geological Magazine, 2004, 141, 195-207.	1.5	46
64	The Himalaya in 3D: Slab dynamics controlled mountain building and monsoon intensification. Lithosphere, 0, , L636.1.	1.4	44
65	A history of the Asian monsoon and its interactions with solid Earth tectonics in Cenozoic South Asia. Geological Society Special Publication, 2019, 483, 631-652.	1.3	44
66	Sediment storage and reworking on the shelf and in the Canyon of the Indus Riverâ€Fan System since the last glacial maximum. Basin Research, 2014, 26, 183-202.	2.7	43
67	Tectonic controls on sedimentation and diagenesis in the Tonga Trench and forearc, southwest Pacific. Bulletin of the Geological Society of America, 1998, 110, 483-496.	3.3	42
68	Formation of the First Bend in the late Eocene gave birth to the modern Yangtze River, China. Geology, 2021, 49, 35-39.	4.4	41
69	Monsoon control over erosion patterns in the Western Himalaya: possible feed-back into the tectonic evolution. Geological Society Special Publication, 2010, 342, 185-218.	1.3	40
70	Fluvial–Eolian Interactions In Sediment Routing and Sedimentary Signal Buffering: An Example From the Indus Basin and Thar Desert. Journal of Sedimentary Research, 2015, 85, 715-728.	1.6	40
71	Evidence of continuous Asian summer monsoon weakening as a response to global cooling over the last 8 Ma. Gondwana Research, 2017, 52, 48-58.	6.0	40
72	Cenozoic sedimentary records of climate-tectonic coupling in the Western Himalaya. Progress in Earth and Planetary Science, 2017, 4, .	3.0	40

#	Article	IF	CITATIONS
73	Thermochronology of the modern Indus River bedload: New insight into the controls on the marine stratigraphic record. Tectonics, 2004, 23, n/a-n/a.	2.8	39
74	Marine sedimentary evidence for monsoon strengthening, Tibetan uplift and drainage evolution in East Asia. Geophysical Monograph Series, 2004, , 255-282.	0.1	39
75	Geochemical evidence for initiation of the modern Mekong delta in the southwestern South China Sea after 8 Ma. Chemical Geology, 2017, 451, 38-54.	3.3	38
76	Ar–Ar muscovite dating as a constraint on sediment provenance and erosion processes in the Red and Yangtze River systems, SE Asia. Earth and Planetary Science Letters, 2010, 295, 379-389.	4.4	37
77	Evolving Yangtze River reconstructed by detrital zircon Uâ€Pb dating and petrographic analysis of Miocene marginal Sea sedimentary rocks of the Western Foothills and Hengchun Peninsula, Taiwan. Tectonics, 2017, 36, 634-651.	2.8	37
78	Neoglacial climate anomalies and the Harappan metamorphosis. Climate of the Past, 2018, 14, 1669-1686.	3.4	36
79	Monsoon controls on sediment generation and transport: Mass budget and provenance constraints from the Indus River catchment, delta and submarine fan over tectonic and multimillennial timescales. Earth-Science Reviews, 2021, 220, 103682.	9.1	36
80	Anomalous subsidence on the rifted volcanic margin of Pakistan: No influence from Deccan plume. Earth and Planetary Science Letters, 2008, 272, 231-239.	4.4	35
81	Giant fossil mass wasting off the coast of West India: The Nataraja submarine slide. Earth and Planetary Science Letters, 2015, 432, 265-272.	4.4	35
82	A Late Eoceneâ€Oligocene Throughâ€Flowing River Between the Upper Yangtze and South China Sea. Geochemistry, Geophysics, Geosystems, 2020, 21, e2020GC009046.	2.5	35
83	Sea-level responses to erosion and deposition of sediment in the Indus River basin and the Arabian Sea. Earth and Planetary Science Letters, 2015, 416, 12-20.	4.4	34
84	Rapid tectonic exhumation, detachment faulting and orogenic collapse in the Caledonides of western Ireland. Tectonophysics, 2004, 384, 91-113.	2.2	33
85	Chemical weathering and provenance evolution of Holocene–Recent sediments from the Western Indus Shelf, Northern Arabian Sea inferred from physical and mineralogical properties. Marine Geology, 2012, 326-328, 101-115.	2.1	33
86	Nonâ€uniform hyperâ€extension in advance of seafloor spreading on the vietnam continental margin and the SW South China Sea. Basin Research, 2014, 26, 106-134.	2.7	33
87	On the Holocene evolution of the Ayeyawady megadelta. Earth Surface Dynamics, 2018, 6, 451-466.	2.4	32
88	Chemical weathering and erosion responses to changing monsoon climate in the Late Miocene of Southwest Asia. Geological Magazine, 2020, 157, 939-955.	1.5	31
89	Pb isotopic variability in the modern-Pleistocene Indus River system measured by ion microprobe in detrital K-feldspar grains. Geochimica Et Cosmochimica Acta, 2011, 75, 4771-4795.	3.9	30
90	The sedimentary, magmatic and tectonic evolution of the southwestern South China Sea revealed by seismic stratigraphic analysis. Marine Geophysical Researches, 2013, 34, 341-365.	1.2	30

#	Article	IF	CITATIONS
91	Distinct control mechanism of fineâ€grained sediments from <scp>Y</scp> ellow <scp>R</scp> iver and <scp>K</scp> yushu supply in the northern <scp>O</scp> kinawa <scp>T</scp> rough since the last glacial. Geochemistry, Geophysics, Geosystems, 2017, 18, 2949-2969.	2.5	30
92	Why is Svalbard an island? Evidence for twoâ€stage uplift, magmatic underplating, and mantle thermal anomalies. Tectonics, 2013, 32, 473-486.	2.8	29
93	Provenance, sea-level and monsoon climate controls on silicate weathering of Yellow River sediment in the northern Okinawa Trough during late last glaciation. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 490, 227-239.	2.3	29
94	Continuous Holocene input of river sediment to the Indus Submarine Canyon. Marine Geology, 2018, 406, 159-176.	2.1	29
95	Sediment flux in the modern Indus River inferred from the trace element composition of detrital amphibole grains. Sedimentary Geology, 2003, 160, 243-257.	2.1	28
96	Detrital U–Pb zircon dating of lower Ordovician syn-arc-continent collision conglomerates in the Irish Caledonides. Tectonophysics, 2009, 479, 165-174.	2.2	28
97	Pulsed subduction accretion and tectonic erosion reconstructed since 2.5 Ma from the tephra record offshore Costa Rica. Geochemistry, Geophysics, Geosystems, 2005, 6, n/a-n/a.	2.5	27
98	Controls on erosion patterns and sediment transport in a monsoonal, tectonically quiescent drainage, Song Gianh, central Vietnam. Basin Research, 2017, 29, 659-683.	2.7	27
99	Regional Pliocene exhumation of the Lesser Himalaya in the Indus drainage. Solid Earth, 2019, 10, 647-661.	2.8	27
100	Tectonics, topography, and river system transition in East Tibet: Insights from the sedimentary record in Taiwan. Geochemistry, Geophysics, Geosystems, 2014, 15, 3658-3674.	2.5	26
101	Climatic and glacial impact on erosion patterns and sediment provenance in the Himalayan rain shadow, Zanskar River, NW India. Bulletin of the Geological Society of America, 2017, 129, 820-836.	3.3	25
102	Bathyal records of enhanced silicate erosion and weathering on the exposed Luzon shelf during glacial lowstands and their significance for atmospheric CO2 sink. Chemical Geology, 2018, 476, 302-315.	3.3	25
103	Continent formation through time. Geological Society Special Publication, 2015, 389, 1-16.	1.3	24
104	Quantifying episodic erosion and transient storage on the western margin of the Tibetan Plateau, upper Indus River. Quaternary Research, 2018, 89, 281-306.	1.7	24
105	Provenance of Thal Desert sand: Focused erosion in the western Himalayan syntaxis and foreland-basin deposition driven by latest Quaternary climate change. Earth-Science Reviews, 2020, 207, 103220.	9.1	24
106	Millennial and centennial variations in zircon Uâ€₽b ages in the quaternary indus submarine canyon. Basin Research, 2019, 31, 155-170.	2.7	22
107	Dynamic support by the Iceland Plume and its effect on the subsidence of the northern Atlantic margins. Journal of the Geological Society, 1995, 152, 935-941.	2.1	21
108	Orbital-scale evolution of the Indian summer monsoon since 1.2†Ma: Evidence from clay mineral records at IODP Expedition 355 Site U1456 in the eastern Arabian Sea. Journal of Asian Earth Sciences, 2019, 174, 11-22.	2.3	21

#	Article	IF	CITATIONS
109	Asian monsoon dynamics and sediment transport in SE Asia. Journal of Asian Earth Sciences, 2020, 195, 104352.	2.3	21
110	Controls on erosion in the western Tarim Basin: Implications for the uplift of northwest Tibet and the Pamir. , 2017, 13, 1747-1765.		21
111	A climatic trigger for a major Oligo-Miocene unconformity in the Himalayan foreland basin. Tectonics, 2010, 29, n/a-n/a.	2.8	20
112	Paleozoic Tectonic Setting and Paleogeographic Evolution of the Qinâ€Fang Region, Southern South China Block: Detrital Zircon Uâ€Pb Geochronological and Hf Isotopic Constraints. Geochemistry, Geophysics, Geosystems, 2018, 19, 3962-3979.	2.5	19
113	Grainâ€size variability within a megaâ€scale pointâ€bar system, False River, Louisiana. Sedimentology, 2019, 66, 408-434.	3.1	19
114	A rapid shift in the sediment routing system of Lower-Upper Oligocene strata in the Qiongdongnnan Basin (Xisha Trough), Northwest South China Sea. Marine and Petroleum Geology, 2019, 104, 249-258.	3.3	19
115	Integrating heavy-mineral, geochemical and biomarker analyses of Plio-Pleistocene sandy and silty turbidites: a novel approach for provenance studies (Indus Fan, IODP Expedition 355). Geological Magazine, 2020, 157, 929-938.	1.5	19
116	Continent elevation, mountains, and erosion: Freeboard implications. Journal of Geophysical Research, 2009, 114, .	3.3	18
117	Tectonic Topography Changes in Cenozoic East Asia: A Landscape Erosionâ€Sediment Archive in the South China Sea. Geochemistry, Geophysics, Geosystems, 2018, 19, 1731-1750.	2.5	18
118	Rapid precipitation changes in the tropical West Pacific linked to North Atlantic climate forcing during the last deglaciation. Quaternary Science Reviews, 2018, 197, 288-306.	3.0	18
119	Expedition 355 summary. Proceedings of the International Ocean Discovery Program, 0, , .	0.0	18
120	Himalayanâ€Tibetan Erosion Is Not the Cause of Neogene Global Cooling. Geophysical Research Letters, 2021, 48, e2020GL087742.	4.0	17
121	Paleoclimatic evolution of the SW and NE South China Sea and its relationship with spectral reflectance data over various age scales. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 525, 25-43.	2.3	16
122	Evolving heavy mineral assemblages reveal changing exhumation and trench tectonics in the Mesozoic Chugach accretionary complex, south-central Alaska. Bulletin of the Geological Society of America, 2012, 124, 989-1006.	3.3	15
123	Long-term history of sediment inputs to the eastern Arabian Sea and its implications for the evolution of the Indian summer monsoon since 3.7 Ma. Geological Magazine, 2020, 157, 908-919.	1.5	15
124	Geochemical Records of the Provenance and Silicate Weathering/Erosion From the Eastern Arabian Sea and Their Responses to the Indian Summer Monsoon Since the Midâ€Pleistocene. Paleoceanography and Paleoclimatology, 2020, 35, e2019PA003732.	2.9	15
125	Coupled onshore erosion and offshore sediment loading as causes of lower crust flow on the margins of South China Sea. Geoscience Letters, 2015, 2, .	3.3	14
126	Reply to Sun et al <i>.</i> : Confirming the evidence for Late Oligoceneâ^'Early Miocene birth of the Taklimakan Desert. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E5558-9.	7.1	14

#		Article	IF	CITATIONS
1	27	Assessing effective provenance methods for fluvial sediment in the South China Sea. Geological Society Special Publication, 2016, 429, 9-29.	1.3	14
1	28	Depositional History and Indian Summer Monsoon Controls on the Silicate Weathering of Sediment Transported to the Eastern Arabian Sea: Geochemical Records From IODP Site U1456 Since 3.8 Ma. Geochemistry, Geophysics, Geosystems, 2019, 20, 4336-4353.	2.5	14
1	29	Drainage evolution and exhumation history of the eastern Himalaya: Insights from the Nicobar Fan, northeastern Indian Ocean. Earth and Planetary Science Letters, 2020, 548, 116472.	4.4	14
13	30	Synchronous Sedimentation in Gonjo Basin, Southeast Tibet in Response to Indiaâ€Asia Collision Constrained by Magnetostratigraphy. Geochemistry, Geophysics, Geosystems, 2021, 22, e2020GC009411.	2.5	14
1	31	Variations in δ13C values of sedimentary organic matter since late Miocene time in the Indus Fan (IODP) Tj ETQq1	1.9.78431 1.9	14.rgBT /O
1	32	Enhanced terrigenous organic matter input and productivity on the western margin of the Western Pacific Warm Pool during the Quaternary sea-level lowstands: Forcing mechanisms and implications for the global carbon cycle. Quaternary Science Reviews, 2020, 232, 106211.	3.0	13
1	33	Site U1456. Proceedings of the International Ocean Discovery Program, 0, , .	0.0	13
13	34	The Canada Basin compared to the southwest South China Sea: Two marginal ocean basins with hyper-extended continent-ocean transitions. Tectonophysics, 2016, 691, 171-184.	2.2	12
1	35	Carbon isotope and rare earth element composition of Late Quaternary sediment gravity flow deposits on the mid shelf of East China Sea: Implications for provenance and origin of hybrid event beds. Sedimentology, 2019, 66, 1861-1895.	3.1	12
13	36	Site U1457. Proceedings of the International Ocean Discovery Program, 0, , .	0.0	12
1	37	Testing chemical weathering proxies in Miocene–Recent fluvial-derived sediments in the South China Sea. Geological Society Special Publication, 2016, 429, 45-72.	1.3	11
13	38	Miocene Volcaniclastic Sequence Within the Xiyu Formation from Source to Sink: Implications for Drainage Development and Tectonic Evolution in Eastern Pamir, NW Tibetan Plateau. Tectonics, 2018, 37, 3261-3284.	2.8	11
1	39	Asian summer monsoon influence on chemical weathering and sediment provenance determined by clay mineral analysis from the Indus Submarine Canyon. Quaternary Research, 2020, 93, 23-39.	1.7	11
14	40	Large-scale mass wasting on the Miocene continental margin of western India. Bulletin of the Geological Society of America, 2020, 132, 85-112.	3.3	11
14	41	Inconsistent change in surface hydrography of the eastern Arabian Sea during the last four glacial–interglacial intervals. Geological Magazine, 2020, 157, 989-1000.	1.5	11
14	42	Impacts of sediment supply and local tectonics on clinoform distribution: the seismic stratigraphy of the mid Pleistocene-Holocene Indus Shelf. Marine Geophysical Researches, 2012, 33, 251-267.	1.2	10
14	43	Identification of new deep sea sinuous channels in the eastern Arabian Sea. SpringerPlus, 2016, 5, 844.	1.2	10
14	44	Tectonic controls of the onset of aeolian deposits in Chinese Loess Plateau – a preliminary hypothesis. International Geology Review, 2018, 60, 945-955.	2.1	10

#	Article	IF	CITATIONS
145	Seismic stratigraphy of Cretaceous eastern Central Atlantic Ocean: Basin evolution and palaeoceanographic implications. Earth and Planetary Science Letters, 2018, 499, 107-121.	4.4	10
146	Paleogene Sedimentary Records of the Paleoâ€Jinshajiang (Upper Yangtze) in the Jianchuan Basin, Yunnan, SW China. Geochemistry, Geophysics, Geosystems, 2021, 22, e2020GC009500.	2.5	10
147	Geochronological and geochemical characterization of paleo-rivers deposits during rifting of the South China Sea. Earth and Planetary Science Letters, 2022, 584, 117427.	4.4	10
148	Post-collisional collapse in the wake of migrating arc-continent collision in the Ilan Basin, Taiwan. , 2008, , 257-278.		9
149	The sedimentary and tectonic evolution of the <scp>A</scp> mur <scp>R</scp> iver and <scp>N</scp> orth <scp>S</scp> akhalin <scp>B</scp> asin: new evidence from seismic stratigraphy and <scp>N</scp> ecent sediment budgets. Basin Research, 2016, 28, 273-297.	2.7	9
150	Climatic or tectonic control on organic matter deposition in the South China Sea? A lesson learned from a comprehensive Neogene palynological study of IODP Site U1433. International Journal of Coal Geology, 2018, 190, 166-177.	5.0	9
151	Clay-fraction strontium and neodymium isotopes in the Indus Fan: implications for sediment transport and provenance. Geological Magazine, 2020, 157, 879-894.	1.5	9
152	Phased evolution and variation of the South Asian monsoon, and resulting weathering and surface erosion in the Himalaya–Karakoram Mountains, since late Pliocene time using data from Arabian Sea core. Geological Magazine, 2020, 157, 864-878.	1.5	9
153	Marine sedimentary records of chemical weathering evolution in the western Himalaya since 17 Ma. , 2021, 17, 824-853.		9
154	Neogene fungal record from IODP Site U1433, South China Sea: Implications for paleoenvironmental change and the onset of the Mekong River. Marine Geology, 2017, 394, 69-81.	2.1	8
155	Flexural subsidence analysis of the Laxmi Basin, Arabian Sea and its tectonic implications. Geological Magazine, 2020, 157, 834-847.	1.5	8
156	Site U1435. Proceedings of the International Ocean Discovery Program, 0, , .	0.0	8
157	Trace element and Pb isotopic constraints on the provenance of the Rosroe and Derryveeny formations, South Mayo, Ireland. Transactions of the Royal Society of Edinburgh: Earth Sciences, 2002, 93, 101-110.	0.7	7
158	Seasonal Variations in the Siliciclastic Fluxes to the Western Philippine Sea and Their Impacts on Seawater ε _{Nd} Values Inferred From 1ÂYear of In Situ Observations Above Benham Rise. Journal of Geophysical Research: Oceans, 2018, 123, 6688-6702.	2.6	7
159	Provenance evolution of the northern Weihe Basin as an indicator of environmental changes during the Quaternary. Geological Magazine, 2019, 156, 1915-1923.	1.5	7
160	A late Pleistocene sedimentation in the Indus Fan, Arabian Sea, IODP Site U1457. Geological Magazine, 2020, 157, 920-928.	1.5	7
161	Sedimentary budget of the Northwest Sub-basin, South China Sea: controlling factors and geological implications. International Geology Review, 2020, 62, 970-987.	2.1	7
162	Enhancements of Himalayan and Tibetan Erosion and the Produced Organic Carbon Burial in Distal Tropical Marginal Seas During the Quaternary Glacial Periods: An Integration of Sedimentary Records. Journal of Geophysical Research F: Earth Surface, 2021, 126, e2020JF005828.	2.8	7

#	ARTICLE	IF	CITATIONS
163	Sea-level, monsoonal, and anthropogenic impacts on the millennial-scale variability of siliciclastic sediment input into the western Philippine sea since 27â€ ⁻ ka. Journal of Asian Earth Sciences, 2019, 177, 250-262.	2.3	6
164	Evidence for simple volcanic rifting not complex subduction initiation in the Laxmi Basin. Nature Communications, 2020, 11, 2733.	12.8	6
165	Erosion of the Himalaya-Karakoram recorded by Indus Fan deposits since the Oligocene. Geology, 2021, 49, 1126-1131.	4.4	6
166	Tying catchment to basin in a giant sediment routing system: a source-to-sink study of the Neogene–Recent Amur River and its delta in the North Sakhalin Basin. Geological Society Special Publication, 2014, 386, 163-193.	1.3	5
167	Introduction to the River-Dominated Shelf Sediments of the East Asian Seas. Geological Society Special Publication, 2016, 429, 1-8.	1.3	5
168	Comment on "Srâ€Nd isotope composition and clay mineral assemblages in Eolian dust from the central Philippine Sea over the last 600 kyr: Implications for the transport mechanism of Asian dust―by Seo et al Journal of Geophysical Research D: Atmospheres, 2016, 121, 14,137.	3.3	5
169	Testing the analytical performance of handheld XRF using marine sediments of IODP Expedition 355. Geological Magazine, 2020, 157, 956-960.	1.5	5
170	Slowing rates of regional exhumation in the western Himalaya: fission track evidence from the Indus Fan. Geological Magazine, 2020, 157, 848-863.	1.5	5
171	Sedimentology of the modern seasonal lower Ganges River with low inter-annual peak discharge variance, Bangladesh. Journal of the Geological Society, 2021, 178, .	2.1	5
172	A new K-Ar illite dating application to constrain the timing of subduction in West Sarawak, Borneo. Bulletin of the Geological Society of America, 2022, 134, 405-418.	3.3	5
173	A sediment budget for the Transkei Basin, Southwest Indian Ocean. Marine Geophysical Researches, 2015, 36, 281-291.	1.2	4
174	Ground-penetrating radar study of beach-ridge deposits in Huangqihai Lake, North China: the imprint of washover processes. Frontiers of Earth Science, 2016, 10, 183-194.	2.1	4
175	Testing the applicability of zircon Uâ€₽b dating as a provenance method in a highly altered river system, Mississippiâ€Missouri River, USA. Basin Research, 2022, 34, 251-273.	2.7	4
176	Neogene fungal record from IODP Site U1433, South China Sea: Implications for paleoenvironmental change and the onset of the Mekong River. Marine Geology, 2017, 390, 23.	2.1	3
177	U–Pb detrital zircon constraints on active margin magmatism and sedimentation after the Grampian Orogeny in western Ireland. Journal of the Geological Society, 2021, 178, .	2.1	3
178	Discussion of ?Buried oblique-slip faults in the Irish Caledonides? by D. M. Williams. Geological Journal, 2003, 38, 99-100.	1.3	2
179	Comment on "Geochemistry of buried river sediments from Ghaggar Plains, NW India: Multi-proxy records of variations in provenance, paleoclimate, and paleovegetation patterns in the late quaternary―by Ajit Singh, Debajyoti Paul, Rajiv Sinha, Kristina J. Thomsen, Sanjeev Gupta. Palaeogeography. Palaeoclimatology. Palaeoecology. 2016. 455. 65-67.	2.3	2

Holocene organic geochemical record from the Western Indus continental shelf (northern Arabian) Tj ETQq000 rgBT /Overlock 10 Tf 50 2

#	Article	IF	CITATIONS
181	Zircon Uâ€Pb Age Constraints on NW Himalayan Exhumation From the Laxmi Basin, Arabian Sea. Geochemistry, Geophysics, Geosystems, 2022, 23, .	2.5	2
182	Late Miocene unroofing of the Inner Lesser Himalaya recorded in the NW Himalaya foreland basin. Basin Research, 2022, 34, 1894-1916.	2.7	2
183	Reply to comment by R. Hesse on "Tectonic erosion of the Peruvian forearc, Lima Basin, by subduction and Nazca Ridge collision― Tectonics, 2005, 24, n/a-n/a.	2.8	1
184	The bounding-surfaces record of a barrier spit from Huangqihai Lake, North China: implications for coastal barrier boundary hierarchy. Chinese Journal of Oceanology and Limnology, 2016, 34, 1097-1105.	0.7	1
185	Fault kinematics: A record of tectono-climatically controlled sedimentation along passive margins, an example from the U.S. Gulf of Mexico. Bulletin of the Geological Society of America, 2021, 133, 2226-2240.	3.3	1
186	The Nazca Drift System – palaeoceanographic significance of a giant sleeping on the SE Pacific Ocean floor. Geological Magazine, 0, , 1-15.	1.5	1
187	No modern Irrawaddy River until the late Miocene-Pliocene. Earth and Planetary Science Letters, 2022, 584, 117516.	4.4	1
188	Introduction to special collection on geology, tectonics and hydrocarbon systems of SE Asia. Marine Geophysical Researches, 2013, 34, 153-158.	1.2	0
189	Reply to comment by Jianguo Liu, Wen Yan, Zhong Chen, Han Chen, Jun Lu on "Holocene evolution in weathering and erosion patterns in the Pearl River delta― Geochemistry, Geophysics, Geosystems, 2014, 15, 3081-3084.	2.5	0
190	Controls on sediment flux through the Indus Submarine Canyon during the Last Glacial Cycle. , 2015, , \cdot		0
191	The Sabine block, Gulf of Mexico: Promontory on the North American margin?: REPLY. Geology, 2018, 46, e441-e441.	4.4	0
192	Climate–tectonic interactions in the eastern Arabian Sea. Geological Magazine, 2020, 157, 829-833.	1.5	0
193	Preface for article collection "Evolution and variability of Asian Monsoon and its linkage with Cenozoic global cooling― Progress in Earth and Planetary Science, 2020, 7, .	3.0	0