Sara J Oyler-McCance

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7946990/publications.pdf

Version: 2024-02-01

SADAÂL OVIED-MCCANCE

#	Article	IF	CITATIONS
1	Critical considerations for the application of environmental <scp>DNA</scp> methods to detect aquatic species. Methods in Ecology and Evolution, 2016, 7, 1299-1307.	5.2	684
2	Rapid Microsatellite Identification from Illumina Paired-End Genomic Sequencing in Two Birds and a Snake. PLoS ONE, 2012, 7, e30953.	2.5	208
3	Environmental DNA (eDNA) Sampling Improves Occurrence and Detection Estimates of Invasive Burmese Pythons. PLoS ONE, 2015, 10, e0121655.	2.5	166
4	Effects of sample size, number of markers, and allelic richness on the detection of spatial genetic pattern. Molecular Ecology Resources, 2012, 12, 276-284.	4.8	143
5	An empirical comparison of population genetic analyses using microsatellite and SNP data for a species of conservation concern. BMC Genomics, 2020, 21, 382.	2.8	86
6	Sample design effects in landscape genetics. Conservation Genetics, 2013, 14, 275-285.	1.5	79
7	A multilocus population genetic survey of the greater sage-grouse across their range. Molecular Ecology, 2005, 14, 1293-1310.	3.9	75
8	Genetic Applications in Avian Conservation. Auk, 2011, 128, 205-229.	1.4	68
9	Developing approaches for linear mixed modeling in landscape genetics through landscapeâ€directed dispersal simulations. Ecology and Evolution, 2017, 7, 3751-3761.	1.9	62
10	A NEW SPECIES OF SAGE-GROUSE (PHASIANIDAE:CENTROCERCUS) FROM SOUTHWESTERN COLORADO. The Wilson Bulletin, 2000, 112, 445-453.	0.5	59
11	A population genetic comparison of large- and small-bodied sage grouse in Colorado using microsatellite and mitochondrial DNA markers. Molecular Ecology, 1999, 8, 1457-1465.	3.9	55
12	POPULATION GENETICS OF GUNNISON SAGE-GROUSE: IMPLICATIONS FOR MANAGEMENT. Journal of Wildlife Management, 2005, 69, 630-637.	1.8	45
13	Conservation Genomics in the Sagebrush Sea: Population Divergence, Demographic History, and Local Adaptation in Sage-Grouse (Centrocercus spp.). Genome Biology and Evolution, 2019, 11, 2023-2034.	2.5	35
14	Title is missing!. Conservation Genetics, 2003, 4, 301-310.	1.5	34
15	Polygamy slows down population divergence in shorebirds. Evolution; International Journal of Organic Evolution, 2017, 71, 1313-1326.	2.3	33
16	Two Low Coverage Bird Genomes and a Comparison of Reference-Guided versus De Novo Genome Assemblies. PLoS ONE, 2014, 9, e106649.	2.5	30
17	Influence of Changes in Sagebrush on Gunnison Sage Grouse in Southwestern Colorado. Southwestern Naturalist, 2001, 46, 323.	0.1	29
18	Z chromosome divergence, polymorphism and relative effective population size in a genus of lekking birds. Heredity, 2015, 115, 452-459.	2.6	28

#	Article	IF	CITATIONS
19	Isolation and characterization of microsatellite loci in Greater Sage-Grouse (Centrocercus) Tj ETQq1 1 0.784314	rgBT/Ove	erlock 10 Tf 5
20	Contrasting evolutionary histories of MHC class I and class II loci in grouse—effects of selection and gene conversion. Heredity, 2016, 116, 466-476.	2.6	26
21	Landscape characteristics influencing the genetic structure of greater sageâ€grouse within the stronghold of their range: a holistic modeling approach. Ecology and Evolution, 2015, 5, 1955-1969.	1.9	25
22	Quantifying functional connectivity: The role of breeding habitat, abundance, and landscape features on rangeâ€wide gene flow in sageâ€grouse. Evolutionary Applications, 2018, 11, 1305-1321.	3.1	24
23	Chapter 10: Rapid Evolution in Lekking Grouse: Implications for Taxonomic Definitions. Ornithological Monographs, 2010, 67, 114-122.	1.3	22
24	Genomic single-nucleotide polymorphisms confirm that Gunnison and Greater sage-grouse are genetically well differentiated and that the Bi-State population is distinct. Condor, 2015, 117, 217-227.	1.6	20
25	Rangewide genetic analysis of Lesser Prairie-Chicken reveals population structure, range expansion, and possible introgression. Conservation Genetics, 2016, 17, 643-660.	1.5	20
26	A field ornithologist's guide to genomics: Practical considerations for ecology and conservation. Auk, 2016, 133, 626-648.	1.4	19
27	The genetic network of greater sageâ€grouse: Rangeâ€wide identification of keystone hubs of connectivity. Ecology and Evolution, 2018, 8, 5394-5412.	1.9	18
28	An experimental comparison of composite and grab sampling of stream water for metagenetic analysis of environmental DNA. PeerJ, 2018, 6, e5871.	2.0	18
29	Mismatches between breeding phenology and resource abundance of resident alpine ptarmigan negatively affect chick survival. Ecology and Evolution, 2019, 9, 7200-7212.	1.9	16
30	Characterization of microsatellite loci isolated in midget faded rattlesnake (Crotalus viridis) Tj ETQq0 0 0 rgBT /0	Overlock 1	.0 Tf 50 302 T
31	Hierarchical spatial genetic structure in a distinct population segment of greater sage-grouse. Conservation Genetics, 2014, 15, 1299-1311.	1.5	15
32	Longâ€ŧerm persistence of horse fecal <scp>DNA</scp> in the environment makes equids particularly good candidates for noninvasive sampling. Ecology and Evolution, 2018, 8, 4053-4064.	1.9	14
33	Genetic Mark–Recapture Improves Estimates of Maternity Colony Size for Indiana Bats. Journal of Fish and Wildlife Management, 2018, 9, 25-35.	0.9	14
34	Characterization of small microsatellite loci for use in non invasive sampling studies of Gunnison Sage-grouse (Centrocercus minimus). Conservation Genetics Resources, 2010, 2, 17-20.	0.8	12
35	Characterization of small microsatellite loci isolated in endangered Indiana bat (Myotis sodalis) for use in non-invasive sampling. Conservation Genetics Resources, 2011, 3, 243-245.	0.8	12
36	POPULATION GENETIC ANALYSIS OF MOUNTAIN PLOVER USING MITOCHONDRIAL DNA SEQUENCE DATA. Condor, 2005, 107, 353.	1.6	11

SaraÂJ Oyler-McCance

#	Article	IF	CITATIONS
37	A rangewide population genetic study of trumpeter swans. Conservation Genetics, 2007, 8, 1339-1353.	1.5	11
38	Latent spatial models and sampling design for landscape genetics. Annals of Applied Statistics, 2016, 10,	1.1	11
39	Characterizing range-wide divergence in an alpine-endemic bird: a comparison of genetic and genomic approaches. Conservation Genetics, 2018, 19, 1471-1485.	1.5	11
40	Evaluation of genetic change from translocation among Gunnison Sage-Grouse (Centrocercus) Tj ETQq0 0 0 rgE	BT /Overloc 1.6	k 10 Tf 50 62
41	Characterization of ten microsatellite loci in the Broad-tailed Hummingbird (Selasphorus) Tj ETQq1 1 0.784314	rgBT /Over 0.8	ock 10 Tf 50
42	Development of 13 microsatellites for Gunnison Sage-grouse (Centrocercus minimus) using next-generation shotgun sequencing and their utility in Greater Sage-grouse (Centrocercus) Tj ETQq0 0 0 rgBT /	Ov erlo ck 1	0 Tafo 50 537 T
43	Integration of genetic and demographic data to assess population risk in a continuously distributed species. Conservation Genetics, 2017, 18, 89-104.	1.5	10
44	Characterization of microsatellite loci isolated in trumpeter swan (Cygnus buccinator). Molecular Ecology Notes, 2006, 6, 1083-1085.	1.7	9
45	The historical distribution of Gunnison Sage-Grouse in Colorado. Wilson Journal of Ornithology, 2014, 126, 207-217.	0.2	9
46	Blood from a turnip: tissue origin of low-coverage shotgun sequencing libraries affects recovery of mitogenome sequences. Mitochondrial DNA, 2015, 26, 384-388.	0.6	9
47	Signatures of adaptive divergence among populations of an avian species of conservation concern. Evolutionary Applications, 2019, 12, 1661-1677.	3.1	9
48	Genetic markâ€recapture analysis of winter faecal pellets allows estimation of population size in Sage Grouse <i>Centrocercus urophasianus</i> . Ibis, 2020, 162, 749-765.	1.9	9
49	Population Genetic Analysis of Mountain Plover Using Mitochondrial DNA Sequence Data. Condor, 2005, 107, 353-362.	1.6	8
50	Regional Variation in mtDNA of the Lesser Prairie-Chicken. Condor, 2010, 112, 29-37.	1.6	8
51	Using Fecal DNA and Closedâ€Capture Models to Estimate Feral Horse Population Size. Journal of Wildlife Management, 2021, 85, 1150-1161.	1.8	8
52	Genetic consequences of trumpeter swan (Cygnus buccinator) reintroductions. Conservation Genetics, 2011, 12, 257-268.	1.5	7
53	Evaluation of a Chicken 600K SNP genotyping array in non-model species of grouse. Scientific Reports, 2019, 9, 6407.	3.3	7
54	Feral Horse Space Use and Genetic Characteristics from Fecal DNA. Journal of Wildlife Management, 2021, 85, 1074-1083.	1.8	7

SaraÂJ Oyler-McCance

#	Article	IF	CITATIONS
55	Functional connectivity in a continuously distributed, migratory species as revealed by landscape genomics. Ecography, 2021, 44, 987.	4.5	7
56	Occurrence of Greater Sage-Grouse × Sharp-Tailed Grouse Hybrids in Alberta. Condor, 2001, 103, 657-660.	1.6	6
57	Differential influences of local subpopulations on regional diversity and differentiation for greater sageâ€grouse (<i>Centrocercus urophasianus</i>). Molecular Ecology, 2016, 25, 4424-4437.	3.9	6
58	OCCURRENCE OF GREATER SAGE-GROUSE × SHARP-TAILED GROUSE HYBRIDS IN ALBERTA. Condor, 2001, 103, 657.	1.6	5
59	POPULATION STRUCTURE OF MOUNTAIN PLOVER AS DETERMINED USING NUCLEAR MICROSATELLITES. Condor, 2008, 110, 493-499.	1.6	5
60	A population genetic analysis of the midget faded rattlesnake in Wyoming. Conservation Genetics, 2010, 11, 1623-1629.	1.5	5
61	Extensive shared polymorphism at non-MHC immune genes in recently diverged North American prairie grouse. Immunogenetics, 2018, 70, 195-204.	2.4	4
62	Development of microsatellite loci for two New World vultures (Cathartidae). BMC Research Notes, 2019, 12, 257.	1.4	4
63	The Transformative Impact of Genomics on Sage-Grouse Conservation and Management. Population Genomics, 2020, , 523-546.	0.5	4
64	Scaleâ€dependent influence of the sagebrush community on genetic connectivity of the sagebrush obligate Gunnison sageâ€grouse. Molecular Ecology, 2022, 31, 3267-3285.	3.9	4
65	Characterization of microsatellite loci isolated in Mountain Plover (Charadrius montanus). Molecular Ecology Notes, 2007, 7, 802-804.	1.7	3
66	Characterization of ten microsatellite loci in midget faded rattlesnake (Crotalus oreganus) Tj ETQq0 0 0 rgBT /Ove	rlock 10 Tr 0.8	f 50 302 Td
67	The genetic structure of a relict population of wood frogs. Conservation Genetics, 2012, 13, 1521-1530.	1.5	2
68	Development and characterization of thirteen microsatellite loci in Clark's nutcracker (Nucifraga) Tj ETQq0 0 C) rgBT /Ove 0.8	erlock 10 Tf
69	Genetic characterization of the Pacific sheath-tailed bat (<i>Emballonura semicaudata rotensis</i>) using mitochondrial DNA sequence data. Journal of Mammalogy, 2013, 94, 1030-1036.	1.3	2
70	Post-release breeding of translocated sharp-tailed grouse and an absence of artificial insemination effects. Wildlife Research, 2019, 46, 12.	1.4	2
71	Environmental gradients of selection for an alpine-obligate bird, the white-tailed ptarmigan (Lagopus) Tj ETQq1 1 C).784314 2.6	rgBT /Overlo
72	Population genetics reveals bidirectional fish movement across the Continental Divide via an interbasin water transfer. Conservation Genetics, 0, , .	1.5	0