
Wolfgang Schmidt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/79469/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Crystal Structures of Two Titanium Phosphate-Based Proton Conductors: Ab Initio Structure Solution and Materials Properties. Inorganic Chemistry, 2022, 61, 2379-2390.	1.9	7
2	Transient uptake measurements with a physisorption instrument: Trends in gas-phase diffusivities within mesoporous materials. Microporous and Mesoporous Materials, 2022, 330, 111627.	2.2	0
3	Chemical Affinity of Ag-Exchanged Zeolites for Efficient Hydrogen Isotope Separation. Inorganic Chemistry, 2022, 61, 9413-9420.	1.9	9
4	Synthetic ferripyrophyllite: preparation, characterization and catalytic application. Dalton Transactions, 2021, 50, 850-857.	1.6	3
5	Facile synthesis of novel, known, and low-valent transition metal phosphates <i>via</i> reductive phosphatization. Journal of Materials Chemistry A, 2021, 9, 18247-18250.	5.2	5
6	<i>In situ</i> total scattering experiments of nucleation and crystallisation of tantalum-based oxides: from highly dilute solutions <i>via</i> cluster formation to nanoparticles. Nanoscale, 2021, 13, 150-162.	2.8	7
7	Catalytic Hydrodesulfurization of Gaseous Fuels with Autogenously Formed Hydrogen. Chemie-Ingenieur-Technik, 2021, 93, 1028-1032.	0.4	6
8	Sâ€PEEK as a Catalyst for Gas Phase OME Synthesis. ChemCatChem, 2021, 13, 2634-2640.	1.8	5
9	Monitoring the Structure Evolution of Titanium Oxide Photocatalysts: From the Molecular Form via the Amorphous State to the Crystalline Phase. Chemistry - A European Journal, 2021, 27, 11600-11608.	1.7	5
10	In Situ Synchrotron Xâ€ray Diffraction Studies of the Mechanochemical Synthesis of ZnS from its Elements. Chemistry - A European Journal, 2021, 27, 12451-12452.	1.7	2
11	In Situ Synchrotron Xâ€ray Diffraction Studies of the Mechanochemical Synthesis of ZnS from its Elements. Chemistry - A European Journal, 2021, 27, 12558-12565.	1.7	14
12	<i>In situ</i> synchrotron x-ray diffraction studies monitoring mechanochemical reactions of hard materials: Challenges and limitations. Review of Scientific Instruments, 2021, 92, 114102.	0.6	14
13	From 1D to 3D Graphitic Carbon Nitride (Melon): A Bottom-Up Route via Crystalline Microporous Templates. Inorganic Chemistry, 2021, 60, 18957-18963.	1.9	4
14	Effect of water leaching on biochar properties and its impact on organic contaminant sorption. Environmental Science and Pollution Research, 2020, 27, 691-703.	2.7	10
15	Insights into the mechanochemical synthesis of Sn-β: Solid-state metal incorporation in beta zeolite. Microporous and Mesoporous Materials, 2020, 309, 110566.	2.2	23
16	High Dynamics of Vapor Adsorption in Ordered Mesoporous Carbon CMK-5: A Small Angle X-ray Scattering Study. Journal of Physical Chemistry C, 2020, 124, 21418-21425.	1.5	9
17	Titelbild: Direct Atomic‣evel Imaging of Zeolites: Oxygen, Sodium in Na‣TA and Iron in Feâ€MFI (Angew.) Tj E	TQg1 1 0 1.8	.784314 rgB
18	Direct Atomicâ€Level Imaging of Zeolites: Oxygen, Sodium in Naâ€LTA and Iron in Feâ€MFI. Angewandte Chemie	7.2	28

Direct Atomicâ€Level Imaging of Zeolites: Oxyge - International Edition, 2020, 59, 19510-19517.

#	Article	IF	CITATIONS
19	Self-organization of silicates on different length scales exemplified by amorphous mesoporous silica and mesoporous zeolite beta using multiammonium surfactants. RSC Advances, 2020, 10, 20928-20938.	1.7	4
20	Direct Atomicâ€Level Imaging of Zeolites: Oxygen, Sodium in Naâ€LTA and Iron in Feâ€MFI. Angewandte Chemie, 2020, 132, 19678-19685.	1.6	2
21	Carbon Supported Phosphoric Acid Catalysts for Gas-Phase Synthesis of Diesel Additives. Catalysis Letters, 2020, 150, 2951-2958.	1.4	7
22	Studying Proton Mobility in Zeolites by Varying Temperature Infrared Spectroscopy. Molecules, 2019, 24, 3199.	1.7	4
23	Encapsulation of sub-micrometer sized zeolites by porous silica – towards a rational design strategy for functional yolk-shells. Microporous and Mesoporous Materials, 2019, 282, 1-8.	2.2	9
24	Modular Pd/Zeolite Composites Demonstrating the Key Role of Support Hydrophobic/Hydrophilic Character in Methane Catalytic Combustion. ACS Catalysis, 2019, 9, 4742-4753.	5.5	97
25	Sorption mechanisms of chlorinated hydrocarbons on biochar produced from different feedstocks: Conclusions from single- and bi-solute experiments. Chemosphere, 2018, 203, 34-43.	4.2	36
26	Scalable One-Pot Synthesis of Yolk–Shell Carbon Nanospheres with Yolk-Supported Pd Nanoparticles for Size-Selective Catalysis. Chemistry of Materials, 2018, 30, 2483-2487.	3.2	48
27	Unraveling Direct Formation of Hierarchical Zeolite Beta by Dynamic Light Scattering, Small Angle X-ray Scattering, and Liquid and Solid-State NMR: Insights at the Supramolecular Level. Chemistry of Materials, 2018, 30, 2676-2686.	3.2	15
28	Gas-phase synthesis of oxymethylene ethers over Si-rich zeolites. Green Chemistry, 2018, 20, 4719-4728.	4.6	20
29	Proton Mobility, Intrinsic Acid Strength, and Acid Site Location in Zeolites Revealed by Varying Temperature Infrared Spectroscopy and Density Functional Theory Studies. Journal of the American Chemical Society, 2018, 140, 17790-17799.	6.6	51
30	Ozone Treatment: A Versatile Tool for the Postsynthesis Modification of Porous Silica-Based Materials. Chemistry of Materials, 2018, 30, 8905-8914.	3.2	16
31	Surfaceâ€Casting Synthesis of Mesoporous Zirconia with a CMKâ€5â€Like Structure and High Surface Area. Angewandte Chemie - International Edition, 2017, 56, 11222-11225.	7.2	44
32	Surfaceâ€Casting Synthesis of Mesoporous Zirconia with a CMKâ€5â€Like Structure and High Surface Area. Angewandte Chemie, 2017, 129, 11374-11377.	1.6	10
33	IR Microimaging of Directionâ€Dependent Uptake in MFIâ€Type Crystals. Chemie-Ingenieur-Technik, 2017, 89, 1686-1693.	0.4	5
34	Gold on Different Manganese Oxides: Ultra-Low-Temperature CO Oxidation over Colloidal Gold Supported on Bulk-MnO ₂ Nanomaterials. Journal of the American Chemical Society, 2016, 138, 9572-9580.	6.6	88
35	Nitrogenâ€Doped Ordered Mesoporous Carbon Supported Bimetallic PtCo Nanoparticles for Upgrading of Biophenolics. Angewandte Chemie - International Edition, 2016, 55, 8850-8855.	7.2	152
36	Zeolite Beta Formation from Clear Sols: Silicate Speciation, Particle Formation and Crystallization Monitored by Complementary Analysis Methods. Chemistry - A European Journal, 2016, 22, 15307-15319.	1.7	21

#	Article	IF	CITATIONS
37	Co ₃ O ₄ Nanoparticles Supported on Mesoporous Carbon for Selective Transfer Hydrogenation of α,βâ€Unsaturated Aldehydes. Angewandte Chemie, 2016, 128, 11267-11271.	1.6	31
38	Co ₃ O ₄ Nanoparticles Supported on Mesoporous Carbon for Selective Transfer Hydrogenation of α,βâ€Unsaturated Aldehydes. Angewandte Chemie - International Edition, 2016, 55, 11101-11105.	7.2	99
39	Influence of the degree of infiltration of modified activated carbons with CuO/ZnO on the separation of NO ₂ at ambient temperatures. Adsorption Science and Technology, 2016, 34, 307-319.	1.5	7
40	Pseudomorphic Generation of Supported Catalysts for Glycerol Oxidation. ChemCatChem, 2015, 7, 3832-3837.	1.8	13
41	Controllable Synthesis of Mesoporous Peapodâ€like Co ₃ O ₄ @Carbon Nanotube Arrays for Highâ€Performance Lithiumâ€lon Batteries. Angewandte Chemie, 2015, 127, 7166-7170.	1.6	42
42	Controllable Synthesis of Mesoporous Peapodâ€like Co ₃ O ₄ @Carbon Nanotube Arrays for Highâ€Performance Lithiumâ€lon Batteries. Angewandte Chemie - International Edition, 2015, 54, 7060-7064.	7.2	355
43	Microstructure analysis of complex CuO/ZnO@carbon adsorbers: what are the limits of powder diffraction methods?. Physical Chemistry Chemical Physics, 2015, 17, 12282-12291.	1.3	2
44	Highly Ordered Mesoporous Cobalt-Containing Oxides: Structure, Catalytic Properties, and Active Sites in Oxidation of Carbon Monoxide. Journal of the American Chemical Society, 2015, 137, 11407-11418.	6.6	225
45	Multidiagnostic analysis of silicate speciation in clear solutions/sols for zeolite synthesis. Microporous and Mesoporous Materials, 2014, 189, 158-162.	2.2	17
46	Impacts of Geometry, Symmetry, and Morphology of Nanocast Co ₃ O ₄ on Its Catalytic Activity for Water Oxidation. Chemistry of Materials, 2014, 26, 6127-6134.	3.2	67
47	Highly microporous monodisperse silica spheres synthesized by the Stöber process. Microporous and Mesoporous Materials, 2014, 200, 317-325.	2.2	40
48	Flexibility versus rigidity: what determines the stability of zeolite frameworks? A case study. Materials Horizons, 2014, 1, 582-587.	6.4	13
49	Ordered mesoporous Cu–Ce–O catalysts for CO preferential oxidation in H2-rich gases: Influence of copper content and pretreatment conditions. Applied Catalysis B: Environmental, 2014, 152-153, 11-18.	10.8	68
50	Effect of preparation of iron-infiltrated activated carbon catalysts on nitrogen oxide conversion at low temperature. Applied Catalysis B: Environmental, 2014, 160-161, 641-650.	10.8	9
51	Catalytic reduction of nitrogen oxides via nanoscopic oxide catalysts within activated carbons at room temperature. Adsorption, 2013, 19, 1027-1033.	1.4	7
52	Ordered mesoporous materials with MFI structured microporous walls – Synthesis and proof of wall microporosity. Microporous and Mesoporous Materials, 2012, 164, 21-31.	2.2	17
53	One-pot synthesis of polyhedron-like hollow aluminosilicate with mesoporous shells. Journal of Materials Chemistry, 2012, 22, 2473-2477.	6.7	2
54	Size-Controlled Synthesis and Microstructure Investigation of Co ₃ O ₄ Nanoparticles for Low-Temperature CO Oxidation. Journal of Physical Chemistry C, 2012, 116, 19405-19412.	1.5	33

#	Article	IF	CITATIONS
55	One-pot synthesis of mesoporous Cu–γ-Al2O3 as bifunctional catalyst for direct dimethyl ether synthesis. Microporous and Mesoporous Materials, 2012, 164, 3-8.	2.2	52
56	Hydrothermally highly stable acidic mesoporous aluminosilicate spheres with radial channels. Journal of Materials Chemistry, 2011, 21, 880-886.	6.7	12
57	Synthesis and microwave absorbing properties of highly ordered mesoporous crystalline NiFe2O4. Chemical Communications, 2011, 47, 5337.	2.2	164
58	Co ₃ O ₄ –SiO ₂ Nanocomposite: A Very Active Catalyst for CO Oxidation with Unusual Catalytic Behavior. Journal of the American Chemical Society, 2011, 133, 11279-11288.	6.6	189
59	Synthesis of Active Carbon-Based Catalysts by Chemical Vapor Infiltration for Nitrogen Oxide Conversion. Journal of Nanoscience and Nanotechnology, 2011, 11, 7956-7961.	0.9	2
60	Small-sized HZSM-5 zeolite as highly active catalyst for gas phase dehydration of glycerol to acrolein. Journal of Catalysis, 2010, 269, 71-79.	3.1	183
61	Alkene epoxidation with mesoporous materials assembled from TS-1 seeds – Is there a hierarchical pore system?. Journal of Catalysis, 2010, 269, 367-375.	3.1	42
62	Small gold particles supported on MgFe2O4 nanocrystals as novel catalyst for CO oxidation. Applied Catalysis A: General, 2010, 386, 94-100.	2.2	34
63	From glycerol to allyl alcohol: iron oxide catalyzed dehydration and consecutive hydrogen transfer. Chemical Communications, 2010, 46, 1238.	2.2	97
64	Accessing Ultrashort Reaction Times in Particle Formation with SAXS Experiments: ZnS Precipitation on the Microsecond Time Scale. Journal of the American Chemical Society, 2010, 132, 6822-6826.	6.6	22
65	Titanium-Based Nanoporous Materials. , 2009, , 51-75.		1
66	Morphology-dependent zeolite intergrowth structures leading to distinct internal and outer-surface molecular diffusion barriers. Nature Materials, 2009, 8, 959-965.	13.3	251
67	Crosslinked TS-1 as stable catalyst for the Beckmann rearrangement of cyclohexanone oxime. Microporous and Mesoporous Materials, 2009, 117, 228-232.	2.2	28
68	Calculation of XRD patterns of simulated FDU-15, CMK-5, and CMK-3 carbon structures. Microporous and Mesoporous Materials, 2009, 117, 372-379.	2.2	53
69	Solid Catalysts on the Nanoscale: Design of Complex Morphologies and Pore Structures. ChemCatChem, 2009, 1, 53-67.	1.8	61
70	Exploring Crystal Morphology of Nanoporous Hosts from Timeâ€Dependent Guest Profiles. Angewandte Chemie - International Edition, 2008, 47, 3954-3957.	7.2	59
71	Inflection in the loading dependence of the Maxwell–Stefan diffusivity of iso-butane in MFI zeolite. Chemical Physics Letters, 2008, 459, 141-145.	1.2	44
72	1H NMR signal broadening in spectra of alkane molecules adsorbed on MFI-type zeolites. Solid State Nuclear Magnetic Resonance, 2008, 33, 65-71.	1.5	12

#	Article	IF	CITATIONS
73	Formation of surface barriers on silicalite-1 crystal fragments by residual water vapour as probed with isobutane by interference microscopy. Microporous and Mesoporous Materials, 2008, 110, 72-76.	2.2	46
74	The benefit of mesopores in ETS-10 on the vapor-phase Beckmann rearrangement of cyclohexanone oxime. Journal of Catalysis, 2008, 254, 84-90.	3.1	39
75	Supported palladium nanoparticles on hybrid mesoporous silica: Structure/activity-relationship in the aerobic alcohol oxidation using supercritical carbon dioxide. Journal of Catalysis, 2008, 258, 315-323.	3.1	67
76	Evolution of mesoporosity and microporosity of SBA-15 during a treatment with sulfuric acid. Studies in Surface Science and Catalysis, 2007, 165, 195-198.	1.5	0
77	On the influence of ion exchange on the local structure of the titanosilicate ETS-10. Physical Chemistry Chemical Physics, 2007, 9, 3440.	1.3	21
78	Effect of Surface Modification on Uptake Rates of Isobutane in MFI Crystals: An Infrared Microscopy Study. Chemistry of Materials, 2007, 19, 6012-6019.	3.2	54
79	Preparation and Morphology of Pyramidal MFI Single-Crystal Segments. Journal of Physical Chemistry B, 2007, 111, 13538-13543.	1.2	35
80	Generation of hierarchical pore systems in the titanosilicate ETS-10 by hydrogen peroxide treatment under microwave irradiation. Chemical Communications, 2006, , 882.	2.2	46
81	Low temperature oxidative template removal from SBA-15 using MnO4â^'solution and carbon replication of the mesoporous silica product. Journal of Materials Chemistry, 2006, 16, 3396-3401.	6.7	28
82	Scalable synthesis of activated carbon with superparamagnetic properties. Chemical Communications, 2006, , 3987-3989.	2.2	57
83	Structural Defects Induced in ETS-10 by Postsynthesis Treatment with H2O2Solution. Chemistry of Materials, 2006, 18, 3813-3820.	3.2	51
84	Mechanochemical preparation and investigation of properties of magnesium, calcium and lithium–magnesium alanates. Journal of Alloys and Compounds, 2006, 407, 78-86.	2.8	135
85	X-ray photoelectron spectroscopic studies of PAN-based ordered mesoporous carbons (OMC). Microporous and Mesoporous Materials, 2006, 88, 238-243.	2.2	124
86	Fabrication of hierarchically structured carbon monoliths via self-binding and salt templating. Microporous and Mesoporous Materials, 2006, 95, 187-192.	2.2	58
87	PFG NMR and QENS diffusion study of n-alkane homologues in MFI-type zeolites. Microporous and Mesoporous Materials, 2006, 90, 299-306.	2.2	75
88	Hydrogen-Isotope Scrambling on Doped Sodium Alanate. Angewandte Chemie - International Edition, 2006, 45, 3663-3665.	7.2	68
89	Microporous and Mesoporous Catalysts. , 2006, , 95-140.		0
90	Template synthesis of large pore ordered mesoporous carbon. Microporous and Mesoporous Materials, 2005, 80, 117-128.	2.2	76

#	Article	IF	CITATIONS
91	Oxidation behavior of ferrous cations during ion exchange into zeolites under atmospheric conditions. Microporous and Mesoporous Materials, 2005, 84, 302-317.	2.2	18
92	Formation of amorphous carbon nanotubes on ordered mesoporous silica support. Carbon, 2005, 43, 1811-1814.	5.4	20
93	Formation and Characterization of Pt Nanoparticle Networks. European Journal of Inorganic Chemistry, 2005, 2005, 3625-3640.	1.0	19
94	Texture Effects of Circularly Ordered Fibers. ChemPhysChem, 2005, 6, 1269-1275.	1.0	3
95	Weakly Ferromagnetic Ordered Mesoporous Co3O4Synthesized by Nanocasting from Vinyl-Functionalized Cubicla3dMesoporous Silica. Advanced Materials, 2005, 17, 53-56.	11.1	291
96	High Surface Area, Mesoporous, Glassy Alumina with a Controllable Pore Size by Nanocasting from Carbon Aerogels. Chemistry - A European Journal, 2005, 11, 1658-1664.	1.7	67
97	High surface area mesoporous SiC synthesized via nanocasting and carbothermal reduction process. Journal of Materials Science, 2005, 40, 5091-5093.	1.7	51
98	Direct Synthesis of Supported Noble Metal Catalysts via the Activated Carbon Route. Zeitschrift Fur Physikalische Chemie, 2005, 219, 939-948.	1.4	3
99	Synthesis and Characterization of Mesoporous MCM-48 Containing TiO2 Nanoparticles. Chemistry of Materials, 2005, 17, 3820-3829.	3.2	63
100	Emission Spectroscopic Investigation of Triplet Diarylcarbene Generated in Molecular Sieve VPI-5. Journal of Physical Chemistry B, 2005, 109, 20407-20414.	1.2	6
101	Hierarchically Structured Monolithic Silicalite-1 Consisting of Crystallized Nanoparticles and Its Performance in the Beckmann Rearrangement of Cyclohexanone Oxime. Journal of the American Chemical Society, 2005, 127, 12595-12600.	6.6	168
102	Evidence for the existence of β-Na3AlH6: Monitoring the phase transformation from α-Na3AlH6 by in situ methods. Journal of Alloys and Compounds, 2005, 398, 228-234.	2.8	15
103	Pore topology control of three-dimensional large pore cubic silica mesophases. Journal of Materials Chemistry, 2005, 15, 5112.	6.7	50
104	Synthesis of Polyacrylonitrile-Based Ordered Mesoporous Carbon with Tunable Pore Structures. Chemistry of Materials, 2004, 16, 100-103.	3.2	265
105	Nanoengineering of a Magnetically Separable Hydrogenation Catalyst. Angewandte Chemie - International Edition, 2004, 43, 4303-4306.	7.2	492
106	Fabrication of Magnetically Separable Mesostructured Silica with an Open Pore System ChemInform, 2004, 35, no.	0.1	0
107	Nanoengineering of a Magnetically Separable Hydrogenation Catalyst ChemInform, 2004, 35, no.	0.1	0
108	Synthesis and Characterization of Nanocast Silica NCS-1 with CMK-3 as a Template. Chemistry - A European Journal, 2004, 10, 6085-6092.	1.7	31

#	Article	IF	CITATIONS
109	Easy synthesis of an ordered mesoporous carbon with a hexagonally packed tubular structure. Carbon, 2004, 42, 2939-2948.	5.4	154
110	Fabrication of Magnetically Separable Mesostructured Silica with an Open Pore System. Journal of the American Chemical Society, 2004, 126, 8616-8617.	6.6	148
111	Stepwise Removal of the Copolymer Template from Mesopores and Micropores in SBA-15. Chemistry of Materials, 2004, 16, 2918-2925.	3.2	171
112	Synthesis of Ordered Mesoporous Carbon with Bimodal Pore System and High Pore Volume. Advanced Materials, 2003, 15, 1602-1606.	11.1	195
113	Calcination behavior of different surfactant-templated mesostructured silica materials. Microporous and Mesoporous Materials, 2003, 65, 1-29.	2.2	272
114	Consecutive Generation of Mesopores and Micropores in SBA-15. Chemistry of Materials, 2003, 15, 3739-3741.	3.2	136
115	Expanding horizons of mesoporous materials to non-siliceous systems. Studies in Surface Science and Catalysis, 2003, , 399-406.	1.5	9
116	Sorbate-induced changes in the framework of the titanosilicate ETS-10 as detected by 29Si MAS NMR spectroscopy and X-ray powder diffraction. Physical Chemistry Chemical Physics, 2003, 5, 773-777.	1.3	9
117	High-Surface-Area Oxides Obtained by an Activated Carbon Route. Chemistry of Materials, 2002, 14, 3913-3919.	3.2	151
118	Taking Nanocasting One Step Further: Replicating CMK-3 as a Silica Material. Angewandte Chemie, 2002, 114, 3639-3642.	1.6	27
119	Synthesis and Characterization of Ag2NiO2 Showing an Uncommon Charge Distribution. Angewandte Chemie - International Edition, 2002, 41, 643-646.	7.2	54
120	Taking Nanocasting One Step Further: Replicating CMK-3 as a Silica Material. Angewandte Chemie - International Edition, 2002, 41, 3489-3492.	7.2	187
121	Silver-Catalyzed Oxidation of Ethylene to Ethylene Oxide in a Microreaction System. Industrial & Engineering Chemistry Research, 2002, 41, 710-719.	1.8	124
122	Nanosized Transition Metal Spinels with High Surface Areas from Zeolite Precursors. Chemistry of Materials, 2001, 13, 607-612.	3.2	31
123	Evolution of mesoporous materials during the calcination process: structural and chemical behavior. Microporous and Mesoporous Materials, 2001, 44-45, 95-109.	2.2	100
124	A novel synthesis route for high surface area spinels using ion exchanged zeolites as precursors. Microporous and Mesoporous Materials, 2001, 48, 89-94.	2.2	19
125	Thermal induced transformations on completely Zn2+ exchanged zeolites A and Y. Zeitschrift Fur Kristallographie - Crystalline Materials, 2001, 216, 105-111.	0.4	3
126	Thermal Stability and Thermal Transformations of Co2+- or Ni2+-Exchanged Zeolites A, X, and Y. Chemistry of Materials, 2000, 12, 3811-3820.	3.2	55

#	Article	IF	CITATIONS
127	Eine einfache und flexible Synthese von Pyrrolen ausα,β-ungesätigten Sulfonen. Helvetica Chimica Acta, 1998, 81, 1978-1996.	1.0	48
128	Synthesis of a Novel Enantiomerically Pure Chlorin as a Potential Subunit for an Artificial Photosynthetic Reaction Center. Synlett, 1997, 1997, 903-904.	1.0	13
129	The thermal stability of the gallophosphate cloverite. Studies in Surface Science and Catalysis, 1997, , 771-778.	1.5	3
130	The Incorporation of C60 in Molecular Sieves. Angewandte Chemie International Edition in English, 1993, 32, 556-557.	4.4	23
131	Aspects of the characterization of cloverite by solid-state n.m.r. techniques. Zeolites, 1993, 13, 607-610.	0.9	14
132	VPI-5 and related aluminophosphates: Preparation and thermal stability. Zeolites, 1992, 12, 2-8.	0.9	41