
Tao Sun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7946753/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bio-inspired engineering of a perfusion culture platform for guided three-dimensional nerve cell growth and differentiation. Lab on A Chip, 2022, 22, 1006-1017.	6.0	13
2	Accurate modulation of photoprinting under stiffness imaging feedback for engineering ECMs with high-fidelity mechanical properties. Microsystems and Nanoengineering, 2022, 8, .	7.0	3
3	Micro Robotic Manipulation System for the Force Stimulation of Muscle Fiber-like Cell Structure. , 2021, , .		1
4	Fabrication of vascular smooth muscle-like tissues based on self-organization of circumferentially aligned cells in microengineered hydrogels. Lab on A Chip, 2020, 20, 3120-3131.	6.0	16
5	Permeable hollow 3D tissue-like constructs engineered by on-chip hydrodynamic-driven assembly of multicellular hierarchical micromodules. Acta Biomaterialia, 2020, 113, 328-338.	8.3	12
6	Magnetic Micromachine Using Nickel Nanoparticles for Propelling and Releasing in Indirect Assembly of Cell-Laden Micromodules. Micromachines, 2019, 10, 370.	2.9	11
7	3D Construction of Shape-Controllable Tissues through Self-Bonding of Multicellular Microcapsules. ACS Applied Materials & Interfaces, 2019, 11, 22950-22961.	8.0	18
8	Multicellular Co-Culture in Three-Dimensional Gelatin Methacryloyl Hydrogels for Liver Tissue Engineering. Molecules, 2019, 24, 1762.	3.8	34
9	Engineered tissue micro-rings fabricated from aggregated fibroblasts and microfibres for a bottom-up tissue engineering approach. Biofabrication, 2019, 11, 035029.	7.1	9
10	Automated Sorting of Rare Cells Based on Autofocusing Visual Feedback in Fluorescence Microscopy. , 2019, , .		4
11	Untethered Micromachines Using Magnetic Nanoparticles for Wireless Assembly of Cell-laden Heterogeneous Micromodules*. , 2019, , .		0
12	Fabrication of perfusable 3D hepatic lobule-like constructs through assembly of multiple cell type laden hydrogel microstructures. Biofabrication, 2019, 11, 015016.	7.1	35
13	Development of a Highly Compact Microgripper Capable of Online Calibration for Multisized Microobject Manipulation. IEEE Nanotechnology Magazine, 2018, 17, 657-661.	2.0	22
14	Automated Fluidic Assembly of Microvessel-Like Structures Using a Multimicromanipulator System. IEEE/ASME Transactions on Mechatronics, 2018, 23, 667-678.	5.8	19
15	Microrobotic Assembly of Shape-Customized Three-Dimensional Microtissues Based on Surface Tension Driven Self-Alignment. IEEE Nanotechnology Magazine, 2018, 17, 684-687.	2.0	7
16	Construction of Multilayer Porous Scaffold Based on Magnetically Guided Assembly of Microfiber. Journal of Systems Science and Complexity, 2018, 31, 581-595.	2.8	1
17	Magnetic alginate microfibers as scaffolding elements for the fabrication of microvascular-like structures. Acta Biomaterialia, 2018, 66, 272-281.	8.3	45
18	Construction of 3D Micro-Tissue Based on Electrodeposition and Robotic Manipulation. , 2018, , .		1

Tao Sun

#	Article	IF	CITATIONS
19	3-D Visual Feedback for Automated Sorting of Cells with ultra-low Proportion under Dark Field. , 2018, , .		0
20	Assembly of Cellular Microstructures into Lobule-Like 3D Microtissues Based on Microrobotic Manipulation* Research supported by the Beijing Natural Science Foundation under Grant 4164099and the National Natural Science Foundation of China under grants 61603044and 61520106011 , 2018, , .		0
21	Design and Online Calibration of a Highly Compact Microgripper. , 2018, , .		Ο
22	Assembly of RGD-Modified Hydrogel Micromodules into Permeable Three-Dimensional Hollow Microtissues Mimicking in Vivo Tissue Structures. ACS Applied Materials & Interfaces, 2017, 9, 41669-41679.	8.0	50
23	Non-contact transportation and rotation of micro objects by vibrating glass needle circularly under water. , 2017, , .		2
24	Microrobotic assembly of shape-controllable microstructures to perfusable 3D cell-laden microtissues. , 2017, , .		0
25	Magnetically-guided manipulation of microfiber for fabrication of porous cell scaffold. , 2016, , .		0
26	Automated bubble-based assembly of cell-laden microgels into vascular-like microtubes. , 2015, , .		2
27	On-chip fabrication and magnetic force estimation of peapod-like hybrid microfibers using a microfluidic device. Microfluidics and Nanofluidics, 2015, 18, 1177-1187.	2.2	36
28	Three-dimensional magnetic assembly of alginate microfibers using microfluidic "printing" method. , 2015, , .		2
29	Magnetic assembly of microfluidic spun alginate microfibers for fabricating three-dimensional cell-laden hydrogel constructs. Microfluidics and Nanofluidics, 2015, 19, 1169-1180.	2.2	31
30	3D assembly of cellular structures with coordinated manipulation by rail-guided multi-microrobotic system. , 2014, , .		3