
Makoto Kobayashi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/794630/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Multicontrast investigation of in vivo wildtype zebrafish in three development stages using polarization-sensitive optical coherence tomography. Journal of Biomedical Optics, 2022, 27, .	1.4	9
2	Soy-Derived Equol Induces Antioxidant Activity in Zebrafish in an Nrf2-Independent Manner. International Journal of Molecular Sciences, 2022, 23, 5243.	1.8	0
3	Oxidative stress inducers potentiate 2,3,7,8-tetrachlorodibenzo- <i>p</i> -dioxin-mediated pre-cardiac edema in larval zebrafish. Journal of Veterinary Medical Science, 2021, 83, 1050-1058.	0.3	2
4	Pathogenic variants in the survival of motor neurons complex gene <scp><i>GEMIN5</i></scp> cause cerebellar atrophy. Clinical Genetics, 2021, 100, 722-730.	1.0	15
5	Generation and characterization of keap1a- and keap1b-knockout zebrafish. Redox Biology, 2020, 36, 101667.	3.9	17
6	Splicing- and demethylase-independent functions of LSD1 in zebrafish primitive hematopoiesis. Scientific Reports, 2020, 10, 8521.	1.6	6
7	Evaluation of Antioxidant Activity of Spice-Derived Phytochemicals Using Zebrafish. International Journal of Molecular Sciences, 2020, 21, 1109.	1.8	14
8	Hdac1 Regulates Differentiation of Bipotent Liver Progenitor Cells During Regeneration via Sox9b and Cdk8. Gastroenterology, 2019, 156, 187-202.e14.	0.6	59
9	Nrf2 activation attenuates genetic endoplasmic reticulum stress induced by a mutation in the phosphomannomutase 2 gene in zebrafish. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 2758-2763.	3.3	43
10	The possible repositioning of an oral anti-arthritic drug, auranofin, for Nrf2-activating therapy: The demonstration of Nrf2-dependent anti-oxidative action using a zebrafish model. Free Radical Biology and Medicine, 2018, 115, 405-411.	1.3	9
11	MafB is a critical regulator of complement component C1q. Nature Communications, 2017, 8, 1700.	5.8	60
12	Conservation of the Keap1-Nrf2 System: An Evolutionary Journey through Stressful Space and Time. Molecules, 2017, 22, 436.	1.7	123
13	Conservation of the Nrf2-Mediated Gene Regulation of Proteasome Subunits and Glucose Metabolism in Zebrafish. Oxidative Medicine and Cellular Longevity, 2016, 2016, 1-10.	1.9	16
14	Evaluation of the Toxicity and Antioxidant Activity of Redox Nanoparticles in Zebrafish (<i>Danio) Tj ETQq0 0 0 rg</i>	gBT /Overla 2.3	იcჭ 10 Tf 50
15	Nrf2-dependent protection against acute sodium arsenite toxicity in zebrafish. Toxicology and Applied Pharmacology, 2016, 305, 136-142.	1.3	34
16	Sensory systems and ionocytes are targets for silver nanoparticle effects in fish. Nanotoxicology, 2016, 10, 1276-1286.	1.6	26

17	Hemeâ€mediated inhibition of <scp>B</scp> ach1 regulates the liver specificity and transience of the <scp>N</scp> rf2â€dependent induction of zebrafish heme oxygenase 1. Genes To Cells, 2015, 20, 590-600.	0.5	27
18	PRMT8 as a phospholipase regulates Purkinje cell dendritic arborization and motor coordination. Science Advances, 2015, 1, e1500615.	4.7	44

Μακότο Κοβαγάσηι

#	Article	IF	CITATIONS
19	Lateralization, maturation, and anteroposterior topography in the lateral habenula revealed by ZIF268/EGR1 immunoreactivity and labeling history of neuronal activity. Neuroscience Research, 2015, 95, 27-37.	1.0	18
20	LSD1/KDM1A promotes hematopoietic commitment of hemangioblasts through downregulation of Etv2. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 13922-13927.	3.3	37
21	Genetic Evidence of an Evolutionarily Conserved Role for Nrf2 in the Protection against Oxidative Stress. Molecular and Cellular Biology, 2012, 32, 4455-4461.	1.1	77
22	Tissue-Restricted Expression of Nrf2 and Its Target Genes in Zebrafish with Gene-Specific Variations in the Induction Profiles. PLoS ONE, 2011, 6, e26884.	1.1	55
23	Nitro-fatty acids and cyclopentenone prostaglandins share strategies to activate the Keap1-Nrf2 system: a study using green fluorescent protein transgenic zebrafish. Genes To Cells, 2011, 16, 46-57.	0.5	70
24	Molecular basis for <i>Flk1</i> expression in hemato-cardiovascular progenitors in the mouse. Development (Cambridge), 2011, 138, 5357-5368.	1.2	45
25	Metalloprotease-Dependent Onset of Blood Circulation in Zebrafish. Current Biology, 2010, 20, 1110-1116.	1.8	38
26	Harnessing the Antioxidant Power with ARE-Inducing Compounds. Chemistry and Biology, 2010, 17, 419-420.	6.2	4
27	Efficient transient rescue of hematopoietic mutant phenotypes in zebrafish using <i>Tol2</i> â€mediated transgenesis. Development Growth and Differentiation, 2010, 52, 245-250.	0.6	9
28	The keratin-related Ouroboros proteins function as immune antigens mediating tail regression in Xenopus metamorphosis. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 18309-18314.	3.3	27
29	The Antioxidant Defense System Keap1-Nrf2 Comprises a Multiple Sensing Mechanism for Responding to a Wide Range of Chemical Compounds. Molecular and Cellular Biology, 2009, 29, 493-502.	1.1	560
30	Molecular Evolution of Keap1. Journal of Biological Chemistry, 2008, 283, 3248-3255.	1.6	104
31	GATA-1 Self-association Controls Erythroid Development in Vivo. Journal of Biological Chemistry, 2007, 282, 15862-15871.	1.6	26
32	Regulation of GATA1 Gene Expression. Journal of Biochemistry, 2007, 142, 1-10.	0.9	23
33	Nrf2–Keap1 regulation of cellular defense mechanisms against electrophiles and reactive oxygen species. Advances in Enzyme Regulation, 2006, 46, 113-140.	2.9	747
34	Molecular Mechanisms Activating the Nrf2-Keap1 Pathway of Antioxidant Gene Regulation. Antioxidants and Redox Signaling, 2005, 7, 385-394.	2.5	982
35	Pi class glutathione S-transferase genes are regulated by Nrf 2 through an evolutionarily conserved regulatory element in zebrafish. Biochemical Journal, 2005, 388, 65-73.	1.7	94
36	Lhx2 mediates the activity of Six3 in zebrafish forebrain growth. Developmental Biology, 2005, 287, 456-468.	0.9	102

Μακότο Κοβαγάςηι

#	Article	IF	CITATIONS
37	Characterization of the pufferfish Otx2 cis-regulators reveals evolutionarily conserved genetic mechanisms for vertebrate head specification. Development (Cambridge), 2004, 131, 57-71.	1.2	74
38	A Transposon-Mediated Gene Trap Approach Identifies Developmentally Regulated Genes in Zebrafish. Developmental Cell, 2004, 7, 133-144.	3.1	767
39	MafT, a new member of the small Maf protein family in zebrafish. Biochemical and Biophysical Research Communications, 2004, 320, 62-69.	1.0	47
40	Responses of cytokines and coagulation-fibrinolytic states to surgical stress following esophagectomy. Hepato-Gastroenterology, 2004, 51, 1376-8.	0.5	3
41	Self-Association of Gata1 Enhances Transcriptional Activity In Vivo in Zebra Fish Embryos. Molecular and Cellular Biology, 2003, 23, 8295-8305.	1.1	41
42	Identification of the interactive interface and phylogenic conservation of the Nrf2-Keap1 system. Genes To Cells, 2002, 7, 807-820.	0.5	298
43	Dominant Negative ATF1 Blocks Cyclic AMP-Induced Neurite Outgrowth in PC12D Cells. Journal of Neurochemistry, 2002, 70, 1029-1034.	2.1	38
44	Early subdivisions in the neural plate define distinct competence for inductive signals. Development (Cambridge), 2002, 129, 83-93.	1.2	200
45	Bcl-2 and Bax expression for hepatocellular apoptosis in a murine endotoxin shock model. Hepato-Gastroenterology, 2002, 49, 1602-6.	0.5	2
46	The Homeobox Protein Six3 Interacts with the Groucho Corepressor and Acts as a Transcriptional Repressor in Eye and Forebrain Formation. Developmental Biology, 2001, 232, 315-326.	0.9	162
47	Isolation, Characterization, and Expression Analysis of Zebrafish Large Mafs. Journal of Biochemistry, 2001, 129, 139-146.	0.9	43
48	Hematopoietic regulatory domain of <i>gata1</i> gene is positively regulated by GATA1 protein in zebrafish embryos. Development (Cambridge), 2001, 128, 2341-2350.	1.2	67
49	Expression of three zebrafish Six4 genes in the cranial sensory placodes and the developing somites. Mechanisms of Development, 2000, 98, 151-155.	1.7	82
50	Structure and chromosome mapping of the human SIX4 and murine <i>Six4</i> genes. Cytogenetic and Genome Research, 1999, 87, 108-112.	0.6	13
51	Expression of LIM-domain binding protein (ldb) genes during zebrafish embryogenesis. Mechanisms of Development, 1998, 71, 197-200.	1.7	32
52	Phosphorylation of ATF-1 enhances its DNA binding and transcription of the Na,K-ATPase Â1 subunit gene promoter. Nucleic Acids Research, 1997, 25, 877-882.	6.5	22
53	Synergism of the ATF/CRE Site and GC Box in the Housekeeping Na,K-ATPase α1 Subunit Gene Is Essential for Constitutive Expression. Biochemical and Biophysical Research Communications, 1997, 241, 169-174.	1.0	15
54	Influenza virus PB1 protein is the minimal and essential subunit of RNA polymerase. Archives of Virology, 1996, 141, 525-539.	0.9	68

Μακότο Κοβαγάσηι

#	Article	IF	CITATIONS
55	Molecular dissection of influenza virus RNA polymerase: PB1 subunit alone is able to catalyze RNA synthesis. Virus Genes, 1996, 12, 155-163.	0.7	16
56	ATF-CREB heterodimer is involved in constitutive expression of the housekeeping Na,-ATPase α subunit gene. Nucleic Acids Research, 1995, 23, 2848-2855.	6.5	34
57	Replication in vitro of the influenza virus genome: selective dissociation of RNA replicase from virus-infected cell ribonucleoprotein complexes. Archives of Virology, 1994, 136, 269-286.	0.9	13
58	Molecular dissection of influenza virus nucleoprotein: deletion mapping of the RNA binding domain. Journal of Virology, 1994, 68, 8433-8436.	1.5	70
59	Comparison of Two Reconstituted Systems for In Vitro Transcription and Replication of Influenza Virus1. Journal of Biochemistry, 1992, 111, 496-499.	0.9	31
60	Reconstitution of influenza virus RNA polymerase from three subunits expressed using recombinant baculovirus system. Virus Research, 1992, 22, 235-245.	1.1	50
61	Reduced tyrosine phosphorylation and non-responsiveness to EGF-mediated cytotoxicity in EGF receptor-hyperproducing UCVA-1 cells. Cellular Signalling, 1990, 2, 245-252.	1.7	7
62	Promoter selectivity ofEscherichia coliRNA polymerase: effect of base substitutions in the promoter â°'35 region on promoter strength. Nucleic Acids Research, 1990, 18, 7367-7372.	6.5	82
63	Lung Cancer Cells Often Express High Levels of Protein Kinase C Activity. Japanese Journal of Cancer Research, 1989, 80, 204-208.	1.7	32
64	Effects of Na and Ca on the generation and conduction of excitation in the ureter. American Journal of Physiology, 1965, 208, 715-719.	5.0	28
65	Effect of sodium deficiency of the action potential of the smooth muscle of ureter. American Journal of Physiology, 1964, 206, 205-210.	5.0	25
66	Conduction Velocity in Various Regions of the Ureter. Tohoku Journal of Experimental Medicine, 1964, 83, 220-224.	0.5	37
67	EFFECTS OF REPETITIVE STIMULI AND TEMPERATURERATURE ON URETER ACTION POTENTIALS. The Japanese Journal of Physiology, 1963, 13, 421-430.	0.9	7
68	The Nervous Control of the Intracellular Action Potential of the Squilla Heart. Journal of Cellular and Comparative Physiology, 1962, 59, 55-60.	1.8	14
69	Intracellular Action Potentials of the Guinea Pig Ureter. Proceedings of the Japan Academy, 1962, 38, 171-175.	0.4	10
70	THE LATENT PERIOD OF RELAXATION DUE TO ANODAL CURRENT PULSE IN OYSTER MYOCARDIUM. The Japanese Journal of Physiology, 1962, 12, 242-250.	0.9	0
71	RELAXATION OF OYSTER HEART THROUGH THE ANODAL CURRENT PULSE. The Japanese Journal of Physiology, 1961, 11, 385-392.	0.9	12