
Jamie A Davies

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/794613/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The IUPHAR/BPS guide to PHARMACOLOGY in 2022: curating pharmacology for COVID-19, malaria and antibacterials. Nucleic Acids Research, 2022, 50, D1282-D1294.	14.5	99
2	Synthetic Morphogenesis: Introducing IEEE Journal Readers to Programming Living Mammalian Cells to Make Structures. Proceedings of the IEEE, 2022, 110, 688-707.	21.3	3
3	Introducing blood flow in kidney explants by engraftment onto the chick chorioallantoic membrane is not sufficient to induce arterial smooth muscle cell development. Biology Open, 2022, 11, .	1.2	1
4	<scp>SynPharm</scp> and the guide to pharmacology database: A toolset for conferring drug control on engineered proteins. Protein Science, 2021, 30, 160-167.	7.6	3
5	Bioengineering Self-Organizing Signaling Centers to Control Embryoid Body Pattern Elaboration. ACS Synthetic Biology, 2021, 10, 1465-1480.	3.8	16
6	Renal engineering: strategies to address the problem of the ureter. p { margin-bottom: 0.25cm; line-height: 115%; background: transparent }. Current Opinion in Biomedical Engineering, 2021, , 100334.	3.4	0
7	THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: Enzymes. British Journal of Pharmacology, 2021, 178, S313-S411.	5.4	320
8	THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: Catalytic receptors. British Journal of Pharmacology, 2021, 178, S264-S312.	5.4	148
9	THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: Ion channels. British Journal of Pharmacology, 2021, 178, S157-S245.	5.4	187
10	THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: Introduction and Other Protein Targets. British Journal of Pharmacology, 2021, 178, S1-S26.	5.4	183
11	Connection of ES Cell-derived Collecting Ducts and Ureter-like Structures to Host Kidneys in Culture. Organogenesis, 2021, , 1-10.	1.2	2
12	THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: Nuclear hormone receptors. British Journal of Pharmacology, 2021, 178, S246-S263.	5.4	100
13	THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: Transporters. British Journal of Pharmacology, 2021, 178, S412-S513.	5.4	114
14	THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: G protein oupled receptors. British Journal of Pharmacology, 2021, 178, S27-S156.	5.4	337
15	The IUPHAR/BPS Guide to PHARMACOLOGY in 2020: extending immunopharmacology content and introducing the IUPHAR/MMV Guide to MALARIA PHARMACOLOGY. Nucleic Acids Research, 2020, 48, D1006-D1021.	14.5	131
16	Automation in the Life Science Research Laboratory. Frontiers in Bioengineering and Biotechnology, 2020, 8, 571777.	4.1	57
17	Differentiation of a Contractile, Ureter-Like Tissue, from Embryonic Stem Cell–Derived Ureteric Bud and Ex Fetu Mesenchyme. Journal of the American Society of Nephrology: JASN, 2020, 31, 2253-2262.	6.1	13
18	A rational roadmap for SARSâ€CoVâ€2/COVIDâ€19 pharmacotherapeutic research and development: IUPHAR Review 29. British Journal of Pharmacology, 2020, 177, 4942-4966.	5.4	61

#	Article	IF	CITATIONS
19	Why data citation isn't working, and what to do about it. Database: the Journal of Biological Databases and Curation, 2020, 2020, .	3.0	8
20	The IUPHAR Guide to Immunopharmacology: connecting immunology and pharmacology. Immunology, 2020, 160, 10-23.	4.4	7
21	Regenerative medicine therapies: lessons from the kidney. Current Opinion in Physiology, 2020, 14, 41-47.	1.8	5
22	Optogenetic Downregulation of Protein Levels to Control Programmed Cell Death in Mammalian Cells with a Dual Blue-Light Switch. Methods in Molecular Biology, 2020, 2173, 159-170.	0.9	3
23	Engineering pattern formation and morphogenesis. Biochemical Society Transactions, 2020, 48, 1177-1185.	3.4	19
24	In developing mouse kidneys, orientation of loop of Henle growth is adaptive and guided by longâ€range cues from medullary collecting ducts. Journal of Anatomy, 2019, 235, 262-270.	1.5	5
25	Emergence of structure in mouse embryos: Structural Entropy morphometry applied to digital models of embryonic anatomy. Journal of Anatomy, 2019, 235, 706-715.	1.5	4
26	THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: G protein oupled receptors. British Journal of Pharmacology, 2019, 176, S21-S141.	5.4	519
27	THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Ion channels. British Journal of Pharmacology, 2019, 176, S142-S228.	5.4	242
28	THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Nuclear hormone receptors. British Journal of Pharmacology, 2019, 176, S229-S246.	5.4	127
29	THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Catalytic receptors. British Journal of Pharmacology, 2019, 176, S247-S296.	5.4	156
30	THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Enzymes. British Journal of Pharmacology, 2019, 176, S297-S396.	5.4	423
31	THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Transporters. British Journal of Pharmacology, 2019, 176, S397-S493.	5.4	166
32	THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Introduction and Other Protein Targets. British Journal of Pharmacology, 2019, 176, S1-S20.	5.4	295
33	Inverse pharmacology: Approaches and tools for introducing druggability into engineered proteins. Biotechnology Advances, 2019, 37, 107439.	11.7	2
34	Investigating Aspects of Renal Physiology and Pharmacology in Organ and Organoid Culture. Methods in Molecular Biology, 2019, 1926, 127-142.	0.9	1
35	Real-World Synthetic Biology: Is It Founded on an Engineering Approach, and Should It Be?. Life, 2019, 9, 6.	2.4	10
36	Macrophages restrict the nephrogenic field and promote endothelial connections during kidney development. ELife, 2019, 8, .	6.0	44

#	Article	IF	CITATIONS
37	Accessing Expert urated Pharmacological Data in the IUPHAR/BPS Guide to PHARMACOLOGY. Current Protocols in Bioinformatics, 2018, 61, 1.34.1-1.34.46.	25.8	13
38	Adaptive selfâ€organization in the embryo: its importance to adult anatomy and to tissue engineering. Journal of Anatomy, 2018, 232, 524-533.	1.5	2
39	Sebinger Culture: A System Optimized for Morphological Maturation and Imaging of Cultured Mouse Metanephric Primordia. Bio-protocol, 2018, 8, .	0.4	3
40	Dual-controlled optogenetic system for the rapid down-regulation of protein levels in mammalian cells. Scientific Reports, 2018, 8, 15024.	3.3	46
41	A new guide to immunopharmacology. Nature Reviews Immunology, 2018, 18, 729-729.	22.7	8
42	From organoids to mini-organs. , 2018, , 175-192.		1
43	Organoids and mini-organs. , 2018, , 3-23.		8
44	Vascularizing the Kidney in the Embryo and Organoid: Questioning Assumptions about Renal Vasculogenesis. Journal of the American Society of Nephrology: JASN, 2018, 29, 1593-1595.	6.1	6
45	Functional transport of organic anions and cations in the murine mesonephros. American Journal of Physiology - Renal Physiology, 2018, 315, F130-F137.	2.7	8
46	SynPharm: A Guide to PHARMACOLOGY Database Tool for Designing Drug Control into Engineered Proteins. ACS Omega, 2018, 3, 7993-8002.	3.5	4
47	Challenges of Connecting Chemistry to Pharmacology: Perspectives from Curating the IUPHAR/BPS Guide to PHARMACOLOGY. ACS Omega, 2018, 3, 8408-8420.	3.5	3
48	An Information-Theoretic Measure for Patterning in Epithelial Tissues. IEEE Access, 2018, 6, 40302-40312.	4.2	4
49	Tamoxifen- and Mifepristone-Inducible Versions of CRISPR Effectors, Cas9 and Cpf1. ACS Synthetic Biology, 2018, 7, 2160-2169.	3.8	9
50	The IUPHAR/BPS Guide to PHARMACOLOGY in 2018: updates and expansion to encompass the new guide to IMMUNOPHARMACOLOGY. Nucleic Acids Research, 2018, 46, D1091-D1106.	14.5	1,584
51	Synthetic Biology: A Very Short Introduction. , 2018, , .		22
52	Pax2: A "Keep to the Path―Sign on Waddington's Epigenetic Landscape. Developmental Cell, 2017, 41, 331-332.	7.0	3
53	Symmetryâ€breaking in branching epithelia: cells on microâ€patterns under flow challenge the hypothesis of positive feedback by a secreted autocrine inhibitor of motility. Journal of Anatomy, 2017, 230, 766-774.	1.5	7
54	Using synthetic biology to explore principles of development. Development (Cambridge), 2017, 144, 1146-1158.	2.5	81

#	Article	IF	CITATIONS
55	THE CONCISE GUIDE TO PHARMACOLOGY 2017/18: Nuclear hormone receptors. British Journal of Pharmacology, 2017, 174, S208-S224.	5.4	131
56	THE CONCISE GUIDE TO PHARMACOLOGY 2017/18: Voltageâ€gated ion channels. British Journal of Pharmacology, 2017, 174, S160-S194.	5.4	178
57	THE CONCISE GUIDE TO PHARMACOLOGY 2017/18: G proteinâ€coupled receptors. British Journal of Pharmacology, 2017, 174, S17-S129.	5.4	557
58	THE CONCISE GUIDE TO PHARMACOLOGY 2017/18: Ligandâ€gated ion channels. British Journal of Pharmacology, 2017, 174, S130-S159.	5.4	144
59	THE CONCISE GUIDE TO PHARMACOLOGY 2017/18: Other ion channels. British Journal of Pharmacology, 2017, 174, S195-S207.	5.4	41
60	THE CONCISE GUIDE TO PHARMACOLOGY 2017/18: Overview. British Journal of Pharmacology, 2017, 174, S1-S16.	5.4	269
61	Refuting the hypothesis that semaphorinâ€3f/neuropilinâ€2 exclude blood vessels from the cap mesenchyme in the developing kidney. Developmental Dynamics, 2017, 246, 1047-1056.	1.8	11
62	The inter-dependence of basic and applied biomedical sciences: Lessons from kidney development and tissue-engineering. Porto Biomedical Journal, 2017, 2, 136-139.	1.0	0
63	Cycles of vascular plexus formation within the nephrogenic zone of the developing mouse kidney. Scientific Reports, 2017, 7, 3273.	3.3	59
64	Organizing Organoids: Stem Cells Branch Out. Cell Stem Cell, 2017, 21, 705-706.	11.1	1
65	THE CONCISE GUIDE TO PHARMACOLOGY 2017/18: Enzymes. British Journal of Pharmacology, 2017, 174, S272-S359.	5.4	597
66	Asymmetric BMP4 signalling improves the realism of kidney organoids. Scientific Reports, 2017, 7, 14824.	3.3	28
67	THE CONCISE GUIDE TO PHARMACOLOGY 2017/18: Transporters. British Journal of Pharmacology, 2017, 174, S360-S446.	5.4	193
68	THE CONCISE GUIDE TO PHARMACOLOGY 2017/18: Catalytic receptors. British Journal of Pharmacology, 2017, 174, S225-S271.	5.4	177
69	Rapid Fabrication of Cell-Laden Alginate Hydrogel 3D Structures by Micro Dip-Coating. Frontiers in Bioengineering and Biotechnology, 2017, 5, 13.	4.1	15
70	Synthetic selfâ€patterning and morphogenesis in mammalian cells: a proofâ€ofâ€concept step towards synthetic tissue development. Engineering Biology, 2017, 1, 71-76.	1.8	15
71	The Urinary System. , 2016, , 139-146.		2
72	2- and 3-dimensional synthetic large-scale de novo patterning by mammalian cells through phase separation. Scientific Reports, 2016, 6, 20664.	3.3	71

#	Article	IF	CITATIONS
73	Machines for living in: Connections and contrasts between designed architecture and the development of living forms. Architectural Research Quarterly, 2016, 20, 45-50.	0.1	2
74	Synthetic Biology: Rational Pathway Design for Regenerative Medicine. Gerontology, 2016, 62, 564-570.	2.8	4
75	Synthetic biology meets tissue engineering. Biochemical Society Transactions, 2016, 44, 696-701.	3.4	37
76	The IUPHAR/BPS Guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands. Nucleic Acids Research, 2016, 44, D1054-D1068.	14.5	1,075
77	The Concise Guide to PHARMACOLOGY 2015/16: Overview. British Journal of Pharmacology, 2015, 172, 5729-5743.	5.4	220
78	The Concise Guide to PHARMACOLOGY 2015/16: Ligandâ€gated ion channels. British Journal of Pharmacology, 2015, 172, 5870-5903.	5.4	133
79	The Concise Guide to PHARMACOLOGY 2015/16: Nuclear hormone receptors. British Journal of Pharmacology, 2015, 172, 5956-5978.	5.4	119
80	The Concise Guide to PHARMACOLOGY 2015/16: Enzymes. British Journal of Pharmacology, 2015, 172, 6024-6109.	5.4	521
81	The Concise Guide to PHARMACOLOGY 2015/16: Transporters. British Journal of Pharmacology, 2015, 172, 6110-6202.	5.4	190
82	The Concise Guide to PHARMACOLOGY 2015/16: G protein oupled receptors. British Journal of Pharmacology, 2015, 172, 5744-5869.	5.4	507
83	Transport of organic anions and cations in murine embryonic kidney development and in serially-reaggregated engineered kidneys. Scientific Reports, 2015, 5, 9092.	3.3	25
84	Self-organized Kidney Rudiments: Prospects for Better <i>in vitro</i> Nephrotoxicity Assays. Biomarker Insights, 2015, 10s1, BMI.S20056.	2.5	12
85	The Concise Guide to PHARMACOLOGY 2015/16: Voltageâ€gated ion channels. British Journal of Pharmacology, 2015, 172, 5904-5941.	5.4	176
86	The Concise Guide to PHARMACOLOGY 2015/16: Catalytic receptors. British Journal of Pharmacology, 2015, 172, 5979-6023.	5.4	158
87	The Concise Guide to PHARMACOLOGY 2015/16: Other ion channels. British Journal of Pharmacology, 2015, 172, 5942-5955.	5.4	40
88	Deducing the stage of origin of Wilms' tumours from a developmental series of <i>Wt1</i> mutants. DMM Disease Models and Mechanisms, 2015, 8, 903-17.	2.4	19
89	Cell–Cell Interactions Driving Kidney Morphogenesis. Current Topics in Developmental Biology, 2015, 112, 467-508.	2.2	58
90	An illustrated anatomical ontology of the developing mouse lower urogenital tract. Development (Cambridge), 2015, 142, 1893-1908.	2.5	108

1

#	Article	IF	CITATIONS
91	Node retraction during patterning of the urinary collecting duct system. Journal of Anatomy, 2015, 226, 13-21.	1.5	13
92	Kidney tissue grown from induced stem cells. Nature, 2015, 526, 512-513.	27.8	8
93	Epithelial Branching. , 2015, , 255-264.		1
94	Integrated \hat{I}^2 -catenin, BMP, PTEN, and Notch signalling patterns the nephron. ELife, 2015, 4, e04000.	6.0	86
95	Deducing the stage of origin of Wilms' tumours from a developmental series of Wt1-mutant mice. Development (Cambridge), 2015, 142, e1.2-e1.2.	2.5	1
96	Engineered kidneys: principles, progress, and prospects. Advances in Regenerative Biology, 2014, 1, 24990.	0.2	7
97	A library of mammalian effector modules for synthetic morphology. Journal of Biological Engineering, 2014, 8, 26.	4.7	29
98	A self-avoidance mechanism in patterning of the urinary collecting duct tree. BMC Developmental Biology, 2014, 14, 35.	2.1	28
99	Engineering kidneys from simple cell suspensions: an exercise in self-organization. Pediatric Nephrology, 2014, 29, 519-524.	1.7	26
100	Engineered renal tissue as a potential platform for pharmacokinetic and nephrotoxicity testing. Drug Discovery Today, 2014, 19, 725-729.	6.4	22
101	Guidance by Contact. , 2013, , 129-145.		2
102	Disinherited Daughters Travel by Tube. Developmental Cell, 2013, 27, 245-246.	7.0	1
103	An Improved Method of Renal Tissue Engineering, by Combining Renal Dissociation and Reaggregation with a Low-Volume Culture Technique, Results in Development of Engineered Kidneys Complete with Loops of Henle. Nephron Experimental Nephrology, 2013, 121, e79-e85.	2.2	41
104	Modelling Morphogenesis. , 2013, , 339-346.		0
105	Mechanical and Mathematical ModelsÂof Morphogenesis. , 2013, , 347-363.		1
106	Nephrons require Rho-kinase for proximal-distal polarity development. Scientific Reports, 2013, 3, 2692.	3.3	16
107	Cell Biology of Ureter Development. Journal of the American Society of Nephrology: JASN, 2013, 24, 19-25.	6.1	42

108 Growth, Proliferation and Death. , 2013, , 283-305.

#	Article	IF	CITATIONS
109	FAK–Src signalling is important to renal collecting duct morphogenesis: discovery using a hierarchical screening technique. Biology Open, 2013, 2, 416-423.	1.2	10
110	The Epithelial State. , 2013, , 183-194.		0
111	Epithelial Branching. , 2013, , 247-271.		0
112	Modelling Using Living Cells. , 2013, , 365-374.		0
113	In-lab three-dimensional printing. Organogenesis, 2012, 8, 22-27.	1.2	13
114	In Vivo Maturation of Functional Renal Organoids Formed from Embryonic Cell Suspensions. Journal of the American Society of Nephrology: JASN, 2012, 23, 1857-1868.	6.1	156
115	Integration potential of mouse and human bone marrow-derived mesenchymal stem cells. Differentiation, 2012, 83, 128-137.	1.9	19
116	Human Colon Tissue in Organ Culture. , 2012, , 69-80.		2
117	Access and Use of the GUDMAP Database of Genitourinary Development. Methods in Molecular Biology, 2012, 886, 185-201.	0.9	12
118	Dissociation of Embryonic Kidney Followed by Re-aggregation as a Method for Chimeric Analysis. Methods in Molecular Biology, 2012, 886, 135-146.	0.9	35
119	Making Immortalized Cell Lines from Embryonic Mouse Kidney. Methods in Molecular Biology, 2012, 886, 165-171.	0.9	4
120	siRNA-Mediated RNA Interference in Embryonic Kidney Organ Culture. Methods in Molecular Biology, 2012, 886, 295-303.	0.9	5
121	Esrrg functions in early branch generation of the ureteric bud and is essential for normal development of the renal papilla. Human Molecular Genetics, 2011, 20, 917-926.	2.9	31
122	A Wt1-Controlled Chromatin Switching Mechanism Underpins Tissue-Specific Wnt4 Activation and Repression. Developmental Cell, 2011, 21, 559-574.	7.0	146
123	Calcium/NFAT signalling promotes early nephrogenesis. Developmental Biology, 2011, 352, 288-298.	2.0	84
124	Introduction to the special issue. Theory in Biosciences, 2011, 130, 1-3.	1.4	0
125	The GUDMAP database – an online resource for genitourinary research. Development (Cambridge), 2011, 138, 2845-2853.	2.5	226
126	An improved kidney dissociation and reaggregation culture system results in nephrons arranged organotypically around a single collecting duct system. Organogenesis, 2011, 7, 83-87.	1.2	66

#	Article	IF	CITATIONS
127	A Secreted BMP Antagonist, Cer1, Fine Tunes the Spatial Organization of the Ureteric Bud Tree during Mouse Kidney Development. PLoS ONE, 2011, 6, e27676.	2.5	34
128	Application of Synthetic Biology to Regenerative Medicine. Journal of Bioengineering & Biomedical Science, 2011, 01, .	0.2	11
129	A Novel, Low-Volume Method for Organ Culture of Embryonic Kidneys That Allows Development of Cortico-Medullary Anatomical Organization. PLoS ONE, 2010, 5, e10550.	2.5	57
130	Contribution of human amniotic fluid stem cells to renal tissue formation depends on mTOR. Human Molecular Genetics, 2010, 19, 3320-3331.	2.9	70
131	Dissociation of embryonic kidneys followed by reaggregation allows the formation of renal tissues. Kidney International, 2010, 77, 407-416.	5.2	176
132	Dact2 is expressed in the developing ureteric bud/collecting duct system of the kidney and controls morphogenetic behavior of collecting duct cells. American Journal of Physiology - Renal Physiology, 2010, 299, F740-F751.	2.7	20
133	The Embryonic Kidney: Isolation, Organ Culture, Immunostaining and RNA Interference. Methods in Molecular Biology, 2010, 633, 57-69.	0.9	17
134	GUDMAP - An Online GenitoUrinary Resource. Nature Precedings, 2009, , .	0.1	0
135	Regulation, necessity, and the misinterpretation of knockouts. BioEssays, 2009, 31, 826-830.	2.5	28
136	S08-09 Construction and re-construction of the mammalian kidney. Mechanisms of Development, 2009, 126, S34.	1.7	0
137	07-P023 GUDMAP – An online genitourinary resource. Mechanisms of Development, 2009, 126, S143.	1.7	0
138	09-P034 The multiple roles of Wt1 and Wnt signalling in kidney development and tumorigenesis. Mechanisms of Development, 2009, 126, S160.	1.7	0
139	Control of Organogenesis: Towards Effective Tissue Engineering. , 2009, , 61-70.		1
140	Synthetic morphology: prospects for engineered, self onstructing anatomies. Journal of Anatomy, 2008, 212, 707-719.	1.5	66
141	siRNA as a tool for investigating organogenesis. Organogenesis, 2008, 4, 176-181.	1.2	18
142	GUDMAP. Journal of the American Society of Nephrology: JASN, 2008, 19, 667-671.	6.1	225
143	Developmental plasticity and regenerative capacity in the renal ureteric bud/collecting duct system. Development (Cambridge), 2008, 135, 2505-2510.	2.5	41
144	Cellular mechanisms of morphogenesis. Scholarpedia Journal, 2008, 3, 3615.	0.3	0

#	Article	IF	CITATIONS
145	The KIDSTEM European Research Training Network. Organogenesis, 2007, 3, 2-5.	1.2	10
146	Letter from the Editor. Organogenesis, 2007, 3, 1-1.	1.2	3
147	Epithelial branching: The power of self-loathing. BioEssays, 2007, 29, 205-207.	2.5	12
148	Developmental biologists' choice of subjects approximates to a power law, with no evidence for the existence of a special group of 'model organisms'. BMC Developmental Biology, 2007, 7, 40.	2.1	12
149	The lectin Dolichos biflorus agglutinin is a sensitive indicator of branching morphogenetic activity in the developing mouse metanephric collecting duct system. Journal of Anatomy, 2007, 210, 89-97.	1.5	37
150	A high-resolution anatomical ontology of the developing murine genitourinary tract. Gene Expression Patterns, 2007, 7, 680-699.	0.8	125
151	Design of an irreversible DNA memory element. Natural Computing, 2007, 6, 403-411.	3.0	3
152	The anatomy of organogenesis: Novel solutions to old problems. Progress in Histochemistry and Cytochemistry, 2006, 40, 165-176.	5.1	8
153	A method for cold storage and transport of viable embryonic kidney rudiments. Kidney International, 2006, 70, 2031-2034.	5.2	10
154	A role for microfilament-based contraction in branching morphogenesis of the ureteric bud. Kidney International, 2005, 68, 2010-2018.	5.2	60
155	Why a Book on Branching, and Why Now?. , 2005, , 1-7.		2
156	The European Renal Genome Project. Organogenesis, 2005, 2, 42-47.	1.2	8
157	Watching tubules glow and branch. Current Opinion in Genetics and Development, 2005, 15, 364-370.	3.3	18
158	Welcome to <i>Organogenesis</i> !. Organogenesis, 2004, 1, 1-2.	1.2	1
159	Editorial. Organogenesis, 2004, 1, 35-35.	1.2	0
160	Inverse Correlation between an Organ's Cancer Rate and Its Evolutionary Antiquity. Organogenesis, 2004, 1, 60-63.	1.2	14
161	Pattern and regulation of cell proliferation during murine ureteric bud development. Journal of Anatomy, 2004, 204, 241-255.	1.5	118
162	Structural Determinants of Heparan Sulphate Modulation of GDNF Signalling. Growth Factors, 2003, 21, 109-119.	1.7	39

#	Article	IF	CITATIONS
163	Development of an siRNA-based method for repressing specific genes in renal organ culture and its use to show that the Wt1 tumour suppressor is required for nephron differentiation. Human Molecular Genetics, 2003, 13, 235-246.	2.9	170
164	Development of the Ureteric Bud. , 2003, , 165-179.		2
165	Genes and Proteins in Renal Development. Nephron Experimental Nephrology, 2002, 10, 102-113.	2.2	117
166	Signalling by glial cell line-derived neurotrophic factor (GDNF) requires heparan sulphate glycosaminoglycan. Journal of Cell Science, 2002, 115, 4495-4503.	2.0	94
167	Morphogenesis of the Metanephric Kidney. Scientific World Journal, The, 2002, 2, 1937-1950.	2.1	31
168	Do different branching epithelia use a conserved developmental mechanism?. BioEssays, 2002, 24, 937-948.	2.5	142
169	Intracellular and extracellular regulation of ureteric bud morphogenesis. Journal of Anatomy, 2001, 198, 257-264.	1.5	41
170	Erk MAP kinase regulates branching morphogenesis in the developing mouse kidney. Development (Cambridge), 2001, 128, 4329-4338.	2.5	148
171	Glycosaminoglycans in the study of mammalian organ development. Biochemical Society Transactions, 2001, 29, 166.	3.4	4
172	Intracellular and extracellular regulation of ureteric bud morphogenesis. Journal of Anatomy, 2000, 198, 257-264.	1.5	1
173	Collecting duct morphogenesis. Pediatric Nephrology, 1999, 13, 535-541.	1.7	45
174	The kidney development database. Genesis, 1999, 24, 194-198.	2.1	22
175	Neurturin: An autocrine regulator of renal collecting duct development. , 1999, 24, 284-292.		36
176	Mechanisms of epithelial development and neoplasia in the metanephric kidney. International Journal of Developmental Biology, 1999, 43, 473-8.	0.6	21
177	Persephin, a Novel Neurotrophic Factor Related to GDNF and Neurturin. Neuron, 1998, 20, 245-253.	8.1	460
178	8 The Development of the Kidney. Current Topics in Developmental Biology, 1998, 39, 245-301.	2.2	80
179	Design considerations for small, special-system developmental databases. Seminars in Cell and Developmental Biology, 1997, 8, 519-525.	5.0	3
180	Molecular cloning and expression pattern of rpr-1 , a resiniferatoxin-binding, phosphotriesterase-related protein, expressed in rat kidney tubules 1. FEBS Letters, 1997, 410, 378-382.	2.8	9

#	Article	IF	CITATIONS
181	Molecular aspects of the epithelial phenotype. BioEssays, 1997, 19, 699-704.	2.5	42
182	Kidney development: the inductive interactions. Seminars in Cell and Developmental Biology, 1996, 7, 195-202.	5.0	26
183	Mesenchyme to Epithelium Transition during Development of the Mammalian Kidney Tubule. Cells Tissues Organs, 1996, 156, 187-201.	2.3	109
184	Inductive interactions between the mesenchyme and the ureteric bud. Experimental Nephrology, 1996, 4, 77-85.	0.4	15
185	Development, databases and the internet. BioEssays, 1995, 17, 999-1001.	2.5	4
186	Induction of Early Stages of Kidney Tubule Differentiation by Lithium Ions. Developmental Biology, 1995, 167, 50-60.	2.0	115
187	Control of calbindin-D28K expression in developing mouse kidney. Developmental Dynamics, 1994, 199, 45-51.	1.8	35
188	Towards a genetic basis for kidney development. Mechanisms of Development, 1994, 48, 3-11.	1.7	75
189	How to build a kidney. Seminars in Cell Biology, 1993, 4, 213-219.	3.4	16
190	Isolation from chick somites of a glycoprotein fraction that causes collapse of dorsal root ganglion growth cones. Neuron, 1990, 4, 11-20.	8.1	276
191	Computational Methods and Bioinformatic Tools. , 0, , 769-904.		0
192	Anatomical complexity is acquired at an exponential rate during mouse embryonic development Matters, 0, , .	1.0	0