List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7945826/publications.pdf Version: 2024-02-01

	41323	32815
10,428	49	100
citations	h-index	g-index
117	117	11208
docs citations	times ranked	citing authors
	10,428 citations 117 docs citations	10,428 49 citations h-index

ΙοςÃΩΙΙμολς

#	Article	IF	CITATIONS
1	Reversal of Neuropathology and Motor Dysfunction in a Conditional Model of Huntington's Disease. Cell, 2000, 101, 57-66.	13.5	1,011
2	Role of Tau Protein in Both Physiological and Pathological Conditions. Physiological Reviews, 2004, 84, 361-384.	13.1	787
3	Decreased nuclear beta-catenin, tau hyperphosphorylation and neurodegeneration in GSK-3beta conditional transgenic mice. EMBO Journal, 2001, 20, 27-39.	3.5	783
4	Structural Insights and Biological Effects of Glycogen Synthase Kinase 3-specific Inhibitor AR-A014418. Journal of Biological Chemistry, 2003, 278, 45937-45945.	1.6	451
5	Spatial learning deficit in transgenic mice that conditionally over-express GSK-3β in the brain but do not form tau filaments. Journal of Neurochemistry, 2002, 83, 1529-1533.	2.1	323
6	Increased vulnerability to cocaine in mice lacking the serotonin-1B receptor. Nature, 1998, 393, 175-178.	13.7	309
7	Glycogen synthase kinase-3 inhibition is integral to long-term potentiation. European Journal of Neuroscience, 2007, 25, 81-86.	1.2	300
8	GSK3: A possible link between beta amyloid peptide and tau protein. Experimental Neurology, 2010, 223, 322-325.	2.0	240
9	GSK3 and Tau: Two Convergence Points in Alzheimer's Disease. Journal of Alzheimer's Disease, 2012, 33, S141-S144.	1.2	238
10	Full Reversal of Alzheimer's Disease-Like Phenotype in a Mouse Model with Conditional Overexpression of Glycogen Synthase Kinase-3. Journal of Neuroscience, 2006, 26, 5083-5090.	1.7	234
11	Neuronal Induction of the Immunoproteasome in Huntington's Disease. Journal of Neuroscience, 2003, 23, 11653-11661.	1.7	228
12	FTDP-17 Mutations in tau Transgenic Mice Provoke Lysosomal Abnormalities and Tau Filaments in Forebrain. Molecular and Cellular Neurosciences, 2001, 18, 702-714.	1.0	207
13	Altered P2X7â€receptor level and function in mouse models of Huntington's disease and therapeutic efficacy of antagonist administration. FASEB Journal, 2009, 23, 1893-1906.	0.2	206
14	Chronic lithium administration to FTDP-17 tau and GSK-3? overexpressing mice prevents tau hyperphosphorylation and neurofibrillary tangle formation, but pre-formed neurofibrillary tangles do not revert. Journal of Neurochemistry, 2006, 99, 1445-1455.	2.1	197
15	Huntington's disease is a four-repeat tauopathy with tau nuclear rods. Nature Medicine, 2014, 20, 881-885.	15.2	183
16	Altered Machinery of Protein Synthesis in Alzheimer's: From the Nucleolus to the Ribosome. Brain Pathology, 2016, 26, 593-605.	2.1	180
17	Loss of striatal type 1 cannabinoid receptors is a key pathogenic factor in Huntington's disease. Brain, 2011, 134, 119-136.	3.7	178
18	Tauopathies with parkinsonism: clinical spectrum, neuropathologic basis, biological markers, and treatment options. European Journal of Neurology, 2009, 16, 297-309.	1.7	170

#	Article	IF	CITATIONS
19	Proteasomal-Dependent Aggregate Reversal and Absence of Cell Death in a Conditional Mouse Model of Huntington's Disease. Journal of Neuroscience, 2001, 21, 8772-8781.	1.7	153
20	Absence of Fenfluramine-Induced Anorexia and Reduced c-fos Induction in the Hypothalamus and Central Amygdaloid Complex of Serotonin 1B Receptor Knock-Out Mice. Journal of Neuroscience, 1998, 18, 5537-5544.	1.7	149
21	Glycogen Synthase Kinase-3 Plays a Crucial Role in Tau Exon 10 Splicing and Intranuclear Distribution of SC35. Journal of Biological Chemistry, 2004, 279, 3801-3806.	1.6	122
22	Reduced expression of the TrkB receptor in Huntington's disease mouse models and in human brain. European Journal of Neuroscience, 2006, 23, 649-658.	1.2	121
23	N-terminal Cleavage of GSK-3 by Calpain. Journal of Biological Chemistry, 2007, 282, 22406-22413.	1.6	120
24	Autism-like phenotype and risk gene mRNA deadenylation by CPEB4 mis-splicing. Nature, 2018, 560, 441-446.	13.7	113
25	New players in the 5-HT receptor field: genes and knockouts. Trends in Pharmacological Sciences, 1995, 16, 246-252.	4.0	108
26	Loss of mRNA levels, binding and activation of GTP-binding proteins for cannabinoid CB1 receptors in the basal ganglia of a transgenic model of Huntington's disease. Brain Research, 2002, 929, 236-242.	1.1	107
27	Cooexpression of FTDP-17 tau and CSK- $3\hat{l}^2$ in transgenic mice induce tau polymerization and neurodegeneration. Neurobiology of Aging, 2006, 27, 1258-1268.	1.5	105
28	Tau-knockout mice show reduced GSK3-induced hippocampal degeneration and learning deficits. Neurobiology of Disease, 2010, 37, 622-629.	2.1	100
29	CHOP regulates the p53–MDM2 axis and is required for neuronal survival after seizures. Brain, 2013, 136, 577-592.	3.7	95
30	In vivo inhibition of the mitochondrial H+-ATP synthase in neurons promotes metabolic preconditioning. EMBO Journal, 2014, 33, 762-778.	3.5	93
31	Molecular mechanisms of pain: Serotonin1A receptor agonists trigger transactivation by c-fos of the prodynorphin gene in spinal cord neurons. Neuron, 1993, 10, 599-611.	3.8	92
32	Modulation of the effects of cocaine by 5-HT1B receptors: a comparison of knockouts and antagonists. Pharmacology Biochemistry and Behavior, 2000, 67, 559-566.	1.3	92
33	5-Hydroxytryptamine _{1B} Receptors Modulate the Effect of Cocaine on c- <i>fos</i> Expression: Converging Evidence Using 5-Hydroxytryptamine _{1B} Knockout Mice and the 5-Hydroxytryptamine _{1B/1D} Antagonist GR127935. Molecular Pharmacology, 1997, 51, 755-763.	1.0	90
34	Inhibition of 26S proteasome activity by huntingtin filaments but not inclusion bodies isolated from mouse and human brain. Journal of Neurochemistry, 2006, 98, 1585-1596.	2.1	89
35	Proteasomal Expression, Induction of Immunoproteasome Subunits, and Local MHC Class I Presentation in Myofibrillar Myopathy and Inclusion Body Myositis. Journal of Neuropathology and Experimental Neurology, 2004, 63, 484-498.	0.9	84
36	Ubiquitinââ,¬â€œproteasome system involvement in Huntingtonââ,¬â"¢s disease. Frontiers in Molecular Neuroscience, 2014, 7, 77.	1.4	84

#	Article	IF	CITATIONS
37	Accumulation of ubiquitin conjugates in a polyglutamine disease model occurs without global ubiquitin/proteasome system impairment. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 13986-13991.	3.3	82
38	Acute Polyglutamine Expression in Inducible Mouse Model Unravels Ubiquitin/Proteasome System Impairment and Permanent Recovery Attributable to Aggregate Formation. Journal of Neuroscience, 2010, 30, 3675-3688.	1.7	82
39	Protein oxidation in Huntington disease affects energy production and vitamin B6 metabolism. Free Radical Biology and Medicine, 2010, 49, 612-621.	1.3	77
40	NFAT/Fas signaling mediates the neuronal apoptosis and motor side effects of GSK-3 inhibition in a mouse model of lithium therapy. Journal of Clinical Investigation, 2010, 120, 2432-2445.	3.9	75
41	Full Motor Recovery Despite Striatal Neuron Loss and Formation of Irreversible Amyloid-Like Inclusions in a Conditional Mouse Model of Huntington's Disease. Journal of Neuroscience, 2005, 25, 9773-9781.	1.7	73
42	GSK3β overexpression induces neuronal death and a depletion of the neurogenic niches in the dentate gyrus. Hippocampus, 2011, 21, 910-922.	0.9	71
43	Is the ubiquitin-proteasome system impaired in Huntington's disease?. Cellular and Molecular Life Sciences, 2007, 64, 2245-2257.	2.4	67
44	The role of GSK3 in Alzheimer disease. Brain Research Bulletin, 2009, 80, 248-250.	1.4	64
45	GSK-3 mouse models to study neuronal apoptosis and neurodegeneration. Frontiers in Molecular Neuroscience, 2011, 4, 45.	1.4	64
46	Striatal-Enriched Protein Tyrosine Phosphatase Expression and Activity in Huntington's Disease: A STEP in the Resistance to Excitotoxicity. Journal of Neuroscience, 2011, 31, 8150-8162.	1.7	63
47	Neuronal apoptosis and reversible motor deficit in dominant-negative GSK-3 conditional transgenic mice. EMBO Journal, 2007, 26, 2743-2754.	3.5	59
48	Co-induction of jun B and c-fos in a subset of neurons in the spinal cord. Oncogene, 1991, 6, 223-7.	2.6	57
49	Biochemical, Ultrastructural, and Reversibility Studies on Huntingtin Filaments Isolated from Mouse and Human Brain. Journal of Neuroscience, 2004, 24, 9361-9371.	1.7	52
50	Prion-mediated neurodegeneration is associated with early impairment of the ubiquitin–proteasome system. Acta Neuropathologica, 2016, 131, 411-425.	3.9	51
51	The Ubiquitin-Proteasome System in Huntington's Disease. Neuroscientist, 2005, 11, 583-594.	2.6	50
52	PH domain leucine-rich repeat protein phosphatase 1 contributes to maintain the activation of the PI3K/Akt pro-survival pathway in Huntington's disease striatum. Cell Death and Differentiation, 2010, 17, 324-335.	5.0	49
53	Protective neuronal induction of ATF5 in endoplasmic reticulum stress induced by status epilepticus. Brain, 2013, 136, 1161-1176.	3.7	49
54	Tau in neurodegenerative diseases: Tau phosphorylation and assembly. Neurotoxicity Research, 2004, 6, 477-482.	1.3	47

#	Article	IF	CITATIONS
55	Lithium, a Potential Protective Drug in Alzheimer's Disease. Neurodegenerative Diseases, 2008, 5, 247-249.	0.8	44
56	Impaired ATF6α processing, decreased Rheb and neuronal cell cycle re-entry in Huntington's disease. Neurobiology of Disease, 2011, 41, 23-32.	2.1	43
57	Enhaced induction of the immunoproteasome by interferon gamma in neurons expressing mutant huntingtin. Neurotoxicity Research, 2004, 6, 463-468.	1.3	41
58	GSK-3 dependent phosphoepitopes recognized by PHF-1 and AT-8 antibodies are present in different tau isoforms. Neurobiology of Aging, 2003, 24, 1087-1094.	1.5	40
59	Increased Neurotransmitter Release at the Neuromuscular Junction in a Mouse Model of Polyglutamine Disease. Journal of Neuroscience, 2011, 31, 1106-1113.	1.7	39
60	Testing the ubiquitin–proteasome hypothesis of neurodegeneration in vivo. Trends in Neurosciences, 2004, 27, 66-69.	4.2	36
61	Reduced calcineurin protein levels and activity in exon-1 mouse models of Huntington's disease: Role in excitotoxicity. Neurobiology of Disease, 2009, 36, 461-469.	2.1	36
62	Impaired development of neocortical circuits contributes to the neurological alterations in DYRK1A haploinsufficiency syndrome. Neurobiology of Disease, 2019, 127, 210-222.	2.1	35
63	α-Synuclein accumulates in huntingtin inclusions but forms independent filaments and its deficiency attenuates early phenotype in a mouse model of Huntington's disease. Human Molecular Genetics, 2012, 21, 495-510.	1.4	34
64	Decreased glycogen synthase kinase-3 levels and activity contribute to Huntington's disease. Human Molecular Genetics, 2015, 24, 5040-5052.	1.4	33
65	Bi-directional genetic modulation of GSK-3β exacerbates hippocampal neuropathology in experimental status epilepticus. Cell Death and Disease, 2018, 9, 969.	2.7	32
66	Huntington's disease-specific mis-splicing unveils key effector genes and altered splicing factors. Brain, 2021, 144, 2009-2023.	3.7	32
67	BH3-only proteins Bid and BimEL are differentially involved in neuronal dysfunction in mouse models of Huntington's disease. Journal of Neuroscience Research, 2007, 85, 2756-2769.	1.3	30
68	Faulty splicing and cytoskeleton abnormalities in <scp>H</scp> untington's disease. Brain Pathology, 2016, 26, 772-778.	2.1	30
69	Effects of partial suppression of parkin on huntingtin mutant R6/1 mice. Brain Research, 2009, 1281, 91-100.	1.1	28
70	Assembly In Vitro of Tau Protein and its Implications in Alzheimers Disease. Current Alzheimer Research, 2004, 1, 97-101.	0.7	27
71	Mice with a naturally occurring DISC1 mutation display a broad spectrum of behaviors associated to psychiatric disorders. Frontiers in Behavioral Neuroscience, 2014, 8, 253.	1.0	27
72	Altered Levels and Isoforms of Tau and Nuclear Membrane Invaginations in Huntington's Disease. Frontiers in Cellular Neuroscience, 2019, 13, 574.	1.8	27

#	Article	IF	CITATIONS
73	Nuclear localization of N-terminal mutant huntingtin is cell cycle dependent. European Journal of Neuroscience, 2002, 16, 355-359.	1.2	26
74	Presynaptic dysfunction in Huntington's disease. Biochemical Society Transactions, 2010, 38, 488-492.	1.6	26
75	MAP2 Splicing is Altered in Huntington's Disease. Brain Pathology, 2017, 27, 181-189.	2.1	26
76	P2X7 Receptor Upregulation in Huntington's Disease Brains. Frontiers in Molecular Neuroscience, 2020, 13, 567430.	1.4	25
77	Tau phosphorylation in hippocampus results in toxic gain-of-function. Biochemical Society Transactions, 2010, 38, 977-980.	1.6	24
78	Spatiotemporal progression of ubiquitin-proteasome system inhibition after status epilepticus suggests protective adaptation against hippocampal injury. Molecular Neurodegeneration, 2017, 12, 21.	4.4	23
79	Age-dependent decline of motor neocortex but not hippocampal performance in heterozygous BDNF mice correlates with a decrease of cortical PSD-95 but an increase of hippocampal TrkB levels. Experimental Neurology, 2012, 237, 335-345.	2.0	22
80	α-synuclein levels affect autophagosome numbers in vivo and modulate Huntington disease pathology. Autophagy, 2012, 8, 431-432.	4.3	22
81	Sulfo-glycosaminoglycan content affects PHF-tau solubility and allows the identification of different types of PHFs. Brain Research, 2002, 935, 65-72.	1.1	21
82	Overexpression of synphilin-1 promotes clearance of soluble and misfolded alpha-synuclein without restoring the motor phenotype in aged A30P transgenic mice. Human Molecular Genetics, 2014, 23, 767-781.	1.4	20
83	Huntingtin-mediated axonal transport requires arginine methylation by PRMT6. Cell Reports, 2021, 35, 108980.	2.9	20
84	A new non-aggregative splicing isoform of human Tau is decreased in Alzheimer's disease. Acta Neuropathologica, 2021, 142, 159-177.	3.9	20
85	Tauâ€positive nuclear indentations in P301S tauopathy mice. Brain Pathology, 2017, 27, 314-322.	2.1	17
86	High concordance between hippocampal transcriptome of the mouse intraâ€amygdala kainic acid model and human temporal lobe epilepsy. Epilepsia, 2020, 61, 2795-2810.	2.6	17
87	Pathogenic SREK1 decrease in Huntington's disease lowers TAF1 mimicking X-linked dystonia parkinsonism. Brain, 2020, 143, 2207-2219.	3.7	17
88	Looking for novel functions of tau. Biochemical Society Transactions, 2012, 40, 653-655.	1.6	16
89	Mutant huntingtin affects endocytosis in striatal cells by altering the binding of AP-2 to membranes. Experimental Neurology, 2013, 241, 75-83.	2.0	16
90	The neuroprotective transcription factor ATF5 is decreased and sequestered into polyglutamine inclusions in Huntington's disease. Acta Neuropathologica, 2017, 134, 839-850.	3.9	16

#	Article	IF	CITATIONS
91	CPEB alteration and aberrant transcriptome-polyadenylation lead to a treatable SLC19A3 deficiency in Huntington's disease. Science Translational Medicine, 2021, 13, eabe7104.	5.8	14
92	Reduced striatal dopamine DA D2 receptor function in dominant-negative GSK-3 transgenic mice. European Neuropsychopharmacology, 2014, 24, 1524-1533.	0.3	13
93	Peripheral Noxious Stimulation Induces CREM Expression in Dorsal Horn: Involvement of Glutamate. European Journal of Neuroscience, 1997, 9, 2778-2783.	1.2	12
94	Nuclear localization of β-catenin in adult mouse thalamus correlates with low levels of GSK-3β. NeuroReport, 1999, 10, 2699-2703.	0.6	12
95	Polyadenylation of mRNA as a novel regulatory mechanism of gene expression in temporal lobe epilepsy. Brain, 2020, 143, 2139-2153.	3.7	11
96	Prion-Associated Neurodegeneration Causes Both Endoplasmic Reticulum Stress and Proteasome Impairment in a Murine Model of Spontaneous Disease. International Journal of Molecular Sciences, 2021, 22, 465.	1.8	11
97	Mice Lacking Functional Fas Death Receptors Are Protected from Kainic Acid-Induced Apoptosis in the Hippocampus. Molecular Neurobiology, 2015, 52, 120-129.	1.9	9
98	The regulation of proteostasis in glial cells by nucleotide receptors is key in acute neuroinflammation. FASEB Journal, 2018, 32, 3020-3032.	0.2	9
99	Differential regulation of Kidins220 isoforms in Huntington's disease. Brain Pathology, 2020, 30, 120-136.	2.1	9
100	CK2 alpha prime and alpha-synuclein pathogenic functional interaction mediates synaptic dysregulation in Huntington's disease. Acta Neuropathologica Communications, 2022, 10, .	2.4	9
101	Hippocampal neuronal subpopulations are differentially affected in double transgenic mice overexpressing frontotemporal dementia and parkinsonism linked to chromosome 17 tau and glycogen synthase kinase-31². Neuroscience, 2008, 157, 772-780.	1.1	8
102	A mouse model to study tau pathology related with tau phosphorylation and assembly. Journal of the Neurological Sciences, 2007, 257, 250-254.	0.3	7
103	Impaired PLP-dependent metabolism in brain samples from Huntington disease patients and transgenic R6/1 mice. Metabolic Brain Disease, 2016, 31, 579-586.	1.4	7
104	Testing the possible inhibition of proteasome by direct interaction with ubiquitylated and aggregated huntingtin. Brain Research Bulletin, 2007, 72, 121-123.	1.4	6
105	Tau Kinase I Overexpression Induces Dentate Gyrus Degeneration. Neurodegenerative Diseases, 2010, 7, 13-15.	0.8	5
106	Neuronal Apoptosis and Motor Deficits in Mice with Genetic Inhibition of GSK-3 Are Fas-Dependent. PLoS ONE, 2013, 8, e70952.	1.1	5
107	Regulation of proteasome activity by P2Y 2 receptor underlies the neuroprotective effects of extracellular nucleotides. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2017, 1863, 43-51.	1.8	5
108	Targeting the proteasome in epilepsy. Oncotarget, 2017, 8, 45042-45043.	0.8	3

#	Article	IF	CITATIONS
109	Profiling of Argonaute-2-loaded microRNAs in a mouse model of frontotemporal dementia with parkinsonism-17. International Journal of Physiology, Pathophysiology and Pharmacology, 2018, 10, 172-183.	0.8	2
110	Animal Models with Modified Expression of CSK-3 for the Study of Its Physiology and of Its Implications in Human Pathologies. , 0, , 203-219.		0
111	Centro de Biologia Molecular "Severo Ochoaâ€ŧ A Center for Basic Research into Alzheimer's Disease. Journal of Alzheimer's Disease, 2010, 21, 325-335.	1.2	0
112	Co-expression of FTDP-17 Human Tau and GSK-3ß (or APPSW) in Transgenic Mice: Induction of Tau Polymerization and Neurodegeneration. , 2008, , 337-342.		0