
PrÃ³spero Acevedo-Peña

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7944996/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Increasing the H2 production rate of ZnS(en)x hybrid and ZnS film by photoexfoliation process. International Journal of Hydrogen Energy, 2022, 47, 22403-22414.	3.8	3
2	2022 Roadmap on aqueous batteries. JPhys Energy, 2022, 4, 041501.	2.3	8
3	Incorporation of heteroatoms into reticulated vitreous carbon foams derived from sucrose to improve its energy storage performance. International Journal of Energy Research, 2021, 45, 6383-6394.	2.2	6
4	Characterization and Evaluation of Copper Slag as a Bifunctional Photocatalyst for Alcohols Degradation and Hydrogen Production. Topics in Catalysis, 2021, 64, 131-141.	1.3	7
5	Transition metal-based metal–organic frameworks for environmental applications: a review. Environmental Chemistry Letters, 2021, 19, 1295-1334.	8.3	63
6	Pseudocapacitive Mn-Co mixed oxides obtained by thermal decomposition of manganese hexacyanocobaltate in presence of carbon structures. Electrochimica Acta, 2021, 380, 138218.	2.6	7
7	Enhancing the photocatalytic hydrogen production of the ZnO–TiO2 heterojunction by supporting nanoscale Au islands. International Journal of Hydrogen Energy, 2021, 46, 34333-34343.	3.8	25
8	Unraveling the Fe3O4 NPs role in self-assembled magnetic zinc oxide nanorods for methylene blue photodegradation. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 421, 113514.	2.0	8
9	Ag2O/TiO2 nanostructures for the photocatalytic mineralization of the highly recalcitrant pollutant iopromide in pure and tap water. Catalysis Today, 2020, 341, 71-81.	2.2	19
10	Dependence of the photoactivity of CdS prepared in butanol-ethylenediamine mixture in function of different sacrificial electron donors. Catalysis Today, 2020, 341, 59-70.	2.2	4
11	Potassium-ion aqueous supercapattery composed by solar carbon and nickel-zinc prussian blue analogue. Journal of Energy Storage, 2020, 31, 101667.	3.9	17
12	Sucrose-based reticulated vitreous carbon foams and their modification with nickel hexacyanoferrate for energy storage applications. Diamond and Related Materials, 2020, 109, 108084.	1.8	14
13	Effect of Pd and Cu co-catalyst on the charge carrier trapping, recombination and transfer during photocatalytic hydrogen evolution over WO3–TiO2 heterojunction. Journal of Materials Science, 2020, 55, 16641-16658.	1.7	14
14	Impact of TiO ₂ layer formed on Cu _x S Films on the Photoelectrochemical Water Reduction Process. Journal of the Electrochemical Society, 2020, 167, 046503.	1.3	1
15	Photocatalytic degradation of 2,4-dichlorophenol on ZrO2–TiO2: influence of crystal size, surface area, and energetic states. Journal of Materials Science: Materials in Electronics, 2020, 31, 3332-3341.	1.1	9
16	Fast kinetic redox process in layered cobaltous terephthalate MOF-type for aqueous hybrid devices. Magnetic properties as sensor of Co–Co interactions. Electrochimica Acta, 2020, 346, 136253.	2.6	7
17	Photoelectrochemical Performance of S,N-Codoped TiO ₂ Films Supported on Ti and their Enhanced Photoelectrocatalytic Activity in the Generation of Hydroxyl Radicals. Journal of the Electrochemical Society, 2020, 167, 166514.	1.3	2
18	Breaking Out the Traditional Polymerization: Tailoring the Shape, Structure, and Optical Properties of Polydopamine by Using CdTe Quantum Dots. Macromolecular Chemistry and Physics, 2019, 220, 1900109.	1.1	4

#	Article	IF	CITATIONS
19	Influence of ZnS wurtzite–sphalerite junctions on ZnOCore-ZnSShell-1D photocatalysts for H2 production. International Journal of Hydrogen Energy, 2019, 44, 10528-10540.	3.8	26
20	Cationic and anionic modification of CdS thin films by surface chemical treatment. Applied Surface Science, 2019, 475, 676-683.	3.1	8
21	Novel ZnS-ZnO composite synthesized by the solvothermal method through the partial sulfidation of ZnO for H2 production without sacrificial agent. Applied Catalysis B: Environmental, 2018, 230, 125-134.	10.8	74
22	Electroreduction as a viable strategy to obtain TiO2 nanotube films with preferred anatase crystal orientation and its impact on photoelectrochemical performance. Journal of Solid State Electrochemistry, 2018, 22, 1881-1891.	1.2	5
23	Photoreduction of 4-Nitrophenol in the presence of carboxylic acid using CdS nanofibers. Journal of Materials Science: Materials in Electronics, 2018, 29, 7345-7355.	1.1	13
24	Electrochemical study of the Li-ion storage process in MWCNT@TiO2–SiO2 composites. Journal of Materials Science: Materials in Electronics, 2018, 29, 19889-19900.	1.1	3
25	Ni Prussian Blue Analogue/Mesoporous Carbon Composite as Electrode Material for Aqueous Kâ€lon Energy Storage: Effect of Carbonâ€Framework Interaction on Its Electrochemical Behavior. ChemistrySelect, 2018, 3, 11441-11450.	0.7	16
26	Surface modification of B–TiO2 by deposition of Au nanoparticles to increase its photocatalytic activity under simulated sunlight irradiation. Journal of Sol-Gel Science and Technology, 2018, 88, 474-487.	1.1	12
27	The Effect of the Heating Rate on Anatase Crystal Orientation and Its Impact on the Photoelectrocatalytic Performance of TiO ₂ Nanotube Arrays. Journal of the Electrochemical Society, 2017, 164, H279-H285.	1.3	9
28	SnO ₂ -TiO ₂ structures and the effect of CuO, CoO metal oxide on photocatalytic hydrogen production. Journal of Chemical Technology and Biotechnology, 2017, 92, 1531-1539.	1.6	47
29	Measurements of HOMO-LUMO levels of poly(3-hexylthiophene) thin films by a simple electrochemical method. Journal of Solid State Electrochemistry, 2017, 21, 2407-2414.	1.2	34
30	Efficient ZnO1-xSx composites from the Zn5(CO3)2(OH)6 precursor for the H2 production by photocatalysis. Renewable Energy, 2017, 113, 43-51.	4.3	17
31	Charge transfer processes involved in photocatalytic hydrogen production over CuO/ZrO2–TiO2 materials. International Journal of Hydrogen Energy, 2017, 42, 9744-9753.	3.8	39
32	Rapid breakdown anodization to obtain nanostructured TiO2 powders for photocatalytic hydrogen generation. Journal of Materials Science: Materials in Electronics, 2017, 28, 9859-9866.	1.1	7
33	Photocatalytic activity of Al2O3 improved by the addition of Ce3+/Ce4+ synthesized by the sol-gel method. Photodegradation of phenolic compounds using UV light. Fuel, 2017, 198, 11-21.	3.4	53
34	Interfacial charge-transfer process across ZrO2-TiO2 heterojunction and its impact on photocatalytic activity. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 335, 276-286.	2.0	64
35	Improving photocatalytic reduction of 4-nitrophenol over ZrO ₂ –TiO ₂ by synergistic interaction between methanol and sulfite ions. New Journal of Chemistry, 2017, 41, 12655-12663.	1.4	24
36	Effect of Titanium Content in MWCNT@Sn _{1â€x} Ti _x O ₂ Composites on the Lithium Ion Storage Process. ChemistrySelect, 2017, 2, 6850-6856.	0.7	4

#	Article	IF	CITATIONS
37	Energetic states in SnO2–TiO2 structures and their impact on interfacial charge transfer process. Journal of Materials Science, 2017, 52, 260-275.	1.7	36
38	N and F Codoped TiO2 Thin Films on Stainless Steel for Photoelectrocatalytic Removal of Cyanide Ions in Aqueous Solutions. Materials Research, 2017, 20, 487-495.	0.6	16
39	The role of the oxide shell on the stability and energy storage properties of MWCNT@TiO \$\$_2\$\$ 2 nanohybrid materials used in Li-ion batteries. Theoretical Chemistry Accounts, 2016, 135, 1.	0.5	9
40	Directing photocatalytic and photoelectrocatalytic performance of TiO2 by using TEA and NH4F as doping precursors. Journal of Sol-Gel Science and Technology, 2016, 80, 462-473.	1.1	6
41	Tailoring TiO2-shell thickness and surface coverage for best performance of multiwalled carbon nanotubes@TiO2 in Li-ion batteries. Journal of Materials Science: Materials in Electronics, 2016, 27, 2985-2993.	1.1	15
42	Relation between Morphology and Photoelectrochemical Performance of TiO2 Nanotubes Arrays Grown in Ethylene Glycol/Water. Procedia Chemistry, 2014, 12, 34-40.	0.7	11
43	The effect of anatase crystal orientation on the photoelectrochemical performance of anodic TiO ₂ nanotubes. Physical Chemistry Chemical Physics, 2014, 16, 26213-26220.	1.3	28
44	Facile kinetics of Li-ion intake causes superior rate capability in multiwalled carbon nanotube@TiO2 nanocomposite battery anodes. Journal of Power Sources, 2014, 268, 397-403.	4.0	46
45	Semiconducting properties of ZnO/TiO2 composites by electrochemical measurements and their relationship with photocatalytic activity. Electrochimica Acta, 2014, 140, 541-549.	2.6	95
46	Synthesis and morphological modification of semiconducting Mg(Zn)Al(Ga)–LDH/ITO thin films. Materials Chemistry and Physics, 2014, 147, 339-348.	2.0	6
47	Effect of heat treatment on the crystal phase composition, semiconducting properties and photoelectrocatalytic color removal efficiency of TiO2 nanotubes arrays. Electrochimica Acta, 2014, 140, 564-571.	2.6	56
48	Photo-assisted electrochemical copper removal from cyanide solutions using porous TiO2 thin film photo-anodes. Materials Research, 2014, 17, 69-77.	0.6	10
49	Effect of pH on the Barrier Layer of TiO2Nanoporous Films Potentiostatically Grown in Aqueous Media Containing Fluoride Ions. Journal of the Electrochemical Society, 2013, 160, C291-C297.	1.3	10
50	Effect of water and fluoride content on morphology and barrier layer properties of TiO2 nanotubes grown in ethylene glycol-based electrolytes. Journal of Solid State Electrochemistry, 2013, 17, 2939-2947.	1.2	37
51	Effect of Counter-ion and Solvent on the Morphology and Barrier Layer Properties of Nanoporous/Nanotubular TiO ₂ Films Grown by Anodization in Fluoride Containing Media. Journal of the Electrochemical Society, 2013, 160, C247-C252.	1.3	4
52	TiO2 photoanodes prepared by cathodic electrophoretic deposition in 2-propanol: effect of the electric field and deposition time. Journal of Solid State Electrochemistry, 2013, 17, 519-526.	1.2	9
53	Electrocrystallization of cadmium on anodically formed titanium oxide. Journal of Solid State Electrochemistry, 2013, 17, 445-457.	1.2	4
54	TiO ₂ Nanotubes Formed in Aqueous Media: Relationship between Morphology, Electrochemical Properties and Photoelectrochemical Performance for Water Oxidation. Journal of the Electrochemical Society, 2013, 160, H452-H458.	1.3	20

#	Article	IF	CITATIONS
55	Ti Anodization in Alkaline Electrolyte: The Relationship between Transport of Defects, Film Hydration and Composition. Journal of the Electrochemical Society, 2013, 160, C277-C284.	1.3	42
56	EIS Characterization of the Barrier Layer Formed over Ti during its Potentiostatic Anodization in 0.1 M HClO4/xÂmM HF (1ÂmM â‰æã‰¤300ÂmM). Journal of the Electrochemical Society, 2012, 159, C101-C108.	1.3	17
57	Enhanced photocatalytic activity of TiO2 films by modification with polyethylene glycol. Quimica Nova, 2012, 35, 1931-1935.	0.3	22
58	Formation of TiO2 photoanodes by simultaneous electrophoretic deposition of anatase and rutile particles for photoassisted electrolytic copper ions removal. Quimica Nova, 2012, 35, 499-504.	0.3	10
59	Modification of growth parameters of Ti anodic films by fluoride ion insertion. Journal of Solid State Electrochemistry, 2012, 16, 2709-2715.	1.2	6
60	Generación de estados superficiales durante la formación electroforética catódica de pelÃculas de TiO2 sobre ito. Quimica Nova, 2011, 34, 390-396.	0.3	3
61	Influence of the HClO4 Concentration over the Morphology and Growth of TiO2 Anodic Porous Films Formed in 5 mM HF/xM HClO4 (0.05 M ≤ ≤ M). ECS Transactions, 2011, 36, 257-265.	0.3	6
62	Influence of structural transformations over the electrochemical behavior of Ti anodic films grown in 0.1ÂM NaOH. Journal of Solid State Electrochemistry, 2010, 14, 757-767.	1.2	21
63	Role of the Solvent Employed for the Cathodic Electrophoretic Deposition (EPD) of ITO/TiO2 Films, over its Morphology, Electronic Properties and Photoelectrochemical Behavior. ECS Transactions, 2010, 29, 183-192.	0.3	3
64	Electrochemical Characterization of TiO[sub 2] Films Formed by Cathodic EPD in Aqueous Media. Journal of the Electrochemical Society, 2009, 156, C377.	1.3	18
65	Influence of Structure Transformations over the Growth and Semiconductor Properties of Ti Anodic Films in 0.1 M NaOH. ECS Transactions, 2008, 15, 111-120.	0.3	Ο