List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7944824/publications.pdf Version: 2024-02-01

MEE-YI RVII

#	Article	IF	CITATIONS
1	Effect of Antisolvent Application Volume on CH3NH3PbI3 Films. Applied Science and Convergence Technology, 2022, 31, 28-30.	0.3	2
2	Photoelectrochemical Water Splitting using GaN Nanowires with Reverse-Mesa Structures as Photoanode Material. Applied Science and Convergence Technology, 2022, 31, 51-55.	0.3	8
3	Luminescence properties of InGaN/GaN light-emitting diodes with violet, blue, and green emission. Journal of the Korean Physical Society, 2021, 78, 275-279.	0.3	3
4	Changes in the Electronic Structure of Tetra-Tert-Butyl Copper Phthalocyanine Film by Ultraviolet-Ozone Treatment. Applied Science and Convergence Technology, 2021, 30, 25-28.	0.3	1
5	Defect suppression and photoresponsivity enhancement in methylammonium lead halide perovskites by CdSe/ZnS quantum dots. Journal of Colloid and Interface Science, 2021, 590, 19-27.	5.0	11
6	Electronic structure of P3HT film oxidized by ultraviolet–ozone treatment. Journal of the Korean Physical Society, 2021, 79, 70.	0.3	1
7	Antisolvent treatment of reproducible MAPbI3 perovskite solar cells in ambient atmosphere. Journal of the Korean Physical Society, 2021, 79, 741-745.	0.3	6
8	Luminescence Properties of InGaN/GaN Green Light-Emitting Diodes with Si-Doped Graded Short-Period Superlattice. Journal of Nanoscience and Nanotechnology, 2021, 21, 5648-5652.	0.9	2
9	Effect of CdSe/ZnS quantum dots on temperature-dependent luminescence properties in mixed halide perovskites. Journal of Luminescence, 2020, 219, 116940.	1.5	5
10	Metal-electrode-free inverted organic photovoltaics using electrospray-deposited PEDOT:PSS and spin-coated HAT-CN exciton blocking layer. Current Applied Physics, 2020, 20, 277-281.	1.1	6
11	Effects of UV-ozone treatment on the electronic structures of F8BT and PFO polymeric thin films. Current Applied Physics, 2020, 20, 1359-1365.	1.1	5
12	Formation Mechanism of GaN Nanowires with Various Shapes on Si(111). Journal of the Korean Physical Society, 2020, 77, 247-252.	0.3	7
13	Evolution of optical phonons in epitaxial Ge _{1â^`<i>y</i>} Sn _{<i>y</i>} structures. Journal of Raman Spectroscopy, 2020, 51, 2305-2310.	1.2	1
14	Temperature-dependent carrier dynamics of InP/InGaP quantum structures grown at various growth temperatures using migration-enhanced epitaxy. Journal of Luminescence, 2020, 223, 117214.	1.5	2
15	Effect of tunnel junction grown at different growth rates on the optical properties and improved efficiency of InGaP/GaAs double-junction solar cells. Journal of Alloys and Compounds, 2020, 832, 154989.	2.8	2
16	Influence of Crystallization Temperature on the Optical Properties of MAPbBr ₃ Single Crystals. Applied Science and Convergence Technology, 2020, 29, 19-22.	0.3	4
17	Energy Transfer between Perovskites and CdSe/ZnS Core–shell Quantum Dots. Applied Science and Convergence Technology, 2020, 29, 28-30	0.3	2
18	Structural and Optical Properties of the Perovskite Layer on Well-Aligned ZnO Nanorods. Applied Science and Convergence Technology, 2020, 29, 91-93.	0.3	3

#	Article	IF	CITATIONS
19	Temperature-Dependent Photoluminescence Studies of Ge1â^'ySny (y = 4.3%–9.0%) Grown on Ge-Buffered Si: Evidence for a Direct Bandgap Cross-Over Point. Journal of the Korean Physical Society, 2019, 75, 577-585.	0.3	3
20	Comparison study of temperature dependent direct/indirect bandgap emissions of Ge1-x-ySixSny and Ge1-ySny grown on Ge buffered Si. Thin Solid Films, 2019, 673, 63-71.	0.8	8
21	Enhancement of luminescence properties and stability in perovskite hybrid structure with CdSe/ZnS quantum dots. APL Materials, 2019, 7, 051112.	2.2	3
22	Electronic Structure of Nonionic Surfactant-Modified PEDOT:PSS and Its Application in Perovskite Solar Cells with Reduced Interface Recombination. ACS Applied Materials & Interfaces, 2019, 11, 17028-17034.	4.0	30
23	Effect of energy transfer on the optical properties of surface-passivated perovskite films with CdSe/ZnS quantum dots. Scientific Reports, 2019, 9, 18433.	1.6	16
24	Effect of Growth Cycles on the Luminescence Properties of InP/InGaP Quantum Structures Grown Using Migration-Enhanced Epitaxy. Applied Science and Convergence Technology, 2019, 28, 173-176.	0.3	1
25	Investigation of hydrogen inductively coupled plasma treatment effect for Ge0.938Sn0.062/Ge/Si film using photoreflectance spectroscopy. Thin Solid Films, 2018, 645, 345-350.	0.8	1
26	Highly Efficient and Flexible Photosensors with GaN Nanowires Horizontally Embedded in a Graphene Sandwich Channel. ACS Applied Materials & Interfaces, 2018, 10, 38173-38182.	4.0	22
27	Structural and Optical Properties of GaN Nanowires Formed on Si(111). Applied Science and Convergence Technology, 2018, 27, 95-99.	0.3	5
28	Temperature-dependent Luminescence Properties of Digital-alloy In(Ga _{1â^'z} Al _z)As. Applied Science and Convergence Technology, 2018, 27, 56-60.	0.3	0
29	Luminescence properties of InP/InGaP quantum structures grown by using a migration-enhanced epitaxy at different growth temperatures. Journal of the Korean Physical Society, 2017, 70, 785-790.	0.3	2
30	Stranski–Krastanov InAs/GaAsSb quantum dots coupled with sub-monolayer quantum dot stacks as a promising absorber for intermediate band solar cells. Applied Physics Letters, 2017, 111, 073103.	1.5	16
31	Luminescence properties and mechanisms of optical transitions in digital-alloy InGaAlAs. Thin Solid Films, 2017, 636, 392-396.	0.8	0
32	Improvement of device performances, including electrostatic discharge characteristics, of InGaN/GaN light-emitting diodes by using a Si-doped graded superlattice. Journal of the Korean Physical Society, 2017, 70, 1001-1006.	0.3	1
33	Single-Defect Hexapole Mode GeSn Photonic Crystal Laser: Fabrication and Simulation. , 2017, , .		0
34	Direct bandgap cross-over point of Ge1-ySny grown on Si estimated through temperature-dependent photoluminescence studies. Journal of Applied Physics, 2016, 120, .	1.1	17
35	Influences of Si-doped graded short-period superlattice on green InGaN/GaN light-emitting diodes. Optics Express, 2016, 24, 7743.	1.7	26
36	Emission characteristics of shape-engineered InAs/InAlGaAs quantum dots subjected to thermal treatments. Journal of the Korean Physical Society, 2016, 69, 85-90.	0.3	1

#	Article	IF	CITATIONS
37	Observation of temperature-dependent heavy- and light-hole split direct bandgap and tensile strain from Ge0.985Sn0.015 using photoreflectance spectroscopy. Current Applied Physics, 2016, 16, 83-87.	1.1	5
38	Photoluminescence Studies of InP/InGaP Quantum Structures Grown by a Migration Enhanced Molecular Beam Epitaxy. Applied Science and Convergence Technology, 2016, 25, 81-84.	0.3	2
39	Temperature-Dependent Resonance Energy Transfer from Semiconductor Quantum Wells to Graphene. Nano Letters, 2015, 15, 896-902.	4.5	12
40	Effect of an InGaP spacer layer on the luminescence properties of InP/InGaP quantum structures. Journal of the Korean Physical Society, 2015, 66, 811-815.	0.3	5
41	Temperature-dependent direct transition energy in Ge0.99Sn0.01 film grown on Si measured by photoreflectance spectroscopy. Thin Solid Films, 2015, 591, 295-300.	0.8	12
42	Effect of Growth Temperature on the Luminescence Properties of InP/GaP Short-Period Superlattice Structures. Applied Science and Convergence Technology, 2015, 24, 22-26.	0.3	0
43	Optical Properties of InP/InGaP Quantum Structures Grown by a Migration Enhanced Epitaxy with Different Growth Cycles. Applied Science and Convergence Technology, 2015, 24, 67-71.	0.3	3
44	Observation of heavy- and light-hole split direct bandgap photoluminescence from tensile-strained GeSn (0.03% Sn). Journal of Applied Physics, 2014, 116, 103502.	1.1	20
45	Electrical characterization studies of p-type Ge, Ge1â^'Sn , and Si0.09Ge0.882Sn0.028 grown on n-Si substrates. Current Applied Physics, 2014, 14, S123-S128.	1.1	3
46	Spatial emission distribution of InGaN/GaN light-emitting diodes depending on the pattern structures. Materials Research Bulletin, 2014, 58, 121-125.	2.7	4
47	Luminescence Properties of InAlAs/AlGaAs Quantum Dots Grown by Modified Molecular Beam Epitaxy. Applied Science and Convergence Technology, 2014, 23, 387-391.	0.3	3
48	Bimodal luminescence behavior of spatially-ordered seven-stacked InAs/InAlGaAs quantum dots. Thin Solid Films, 2013, 541, 68-71.	0.8	3
49	Temperature-dependent photoluminescence of Ge/Si and Ge1-ySny/Si, indicating possible indirect-to-direct bandgap transition at lower Sn content. Applied Physics Letters, 2013, 102, .	1.5	59
50	Effect of Annealing Temperature on the Luminescence Properties of Digital-Alloy InGaAlAs Multiple Quantum Wells. Applied Science and Convergence Technology, 2013, 22, 321-326.	0.3	2
51	Luminescence Properties of InAs/GaAs Quantum Dots Grown by MEE Method. Applied Science and Convergence Technology, 2013, 22, 92-97.	0.3	2
52	Optical Properties of InAs Quantum Dots Grown by Changing Arsenic Interruption Time. Applied Science and Convergence Technology, 2013, 22, 86-91.	0.3	0
53	Degenerate parallel conducting layer and conductivity type conversion observed from p-Ge1â^'ySny (y = 0.06%) grown on n-Si substrate. Applied Physics Letters, 2012, 101, 131110.	1.5	9
54	Modification in the structural and optical characteristics of InAs quantum dots by manipulating the strain distribution. Journal of the Korean Physical Society, 2012, 60, 460-465.	0.3	2

#	Article	IF	CITATIONS
55	Ion dose and anneal temperature dependent studies of silicon implanted AlxGa1â^'xN. Current Applied Physics, 2012, 12, 123-128.	1.1	4
56	Luminescence properties of InAs quantum dots formed by a modified self-assembled method. Journal of Luminescence, 2012, 132, 1759-1763.	1.5	10
57	Influence of InGaAs Capping Layers on the Properties of InAs/GaAs Quantum Dots. Applied Science and Convergence Technology, 2012, 21, 342-347.	0.3	2
58	Carrier repopulation process for spatially-ordered InAs/InAlGaAs quantum dots. Journal of Applied Physics, 2011, 109, 113505.	1.1	5
59	Electrical Activation Studies of Silicon-Implanted Al x Ga1â^'x N with Aluminum Mole Fraction of 11% to 51%. Journal of Electronic Materials, 2011, 40, 11-16.	1.0	10
60	Optical characterization of quaternary AlInGaN epilayer and multiple quantum wells grown by a pulsed metalorganic chemical vapor deposition. Current Applied Physics, 2011, 11, 231-235.	1.1	2
61	Complementary metal-oxide semiconductor-compatible detector materials with enhanced 1550 nm responsivity via Sn-doping of Ge/Si(100). Journal of Applied Physics, 2011, 109, .	1.1	41
62	Optical and Electrical Properties of Bulk-grown Ternary InxGa1?xAs. Journal of the Korean Physical Society, 2011, 58, 1267-1273.	0.3	2
63	Optical Characteristics of Multi-Stacked InAs/InAlGaAs Quantum Dots. Applied Science and Convergence Technology, 2011, 20, 442-448.	0.3	4
64	Growth Temperature Effects of In0.4Al0.6As Buffer Layer on the Luminescence Properties of InGaAs/InAlAs Quantum Well Structures. Applied Science and Convergence Technology, 2011, 20, 449-455.	0.3	1
65	Temperature-Dependent Studies of Si-Implanted Al0.33Ga0.67N with Different Annealing Temperatures and Times. Journal of Electronic Materials, 2010, 39, 21-28.	1.0	2
66	Optical properties of undoped, Be-doped, and Si-doped wurtzite-rich GaAs nanowires grown on Si substrates by molecular beam epitaxy. Solid State Communications, 2010, 150, 729-733.	0.9	27
67	Effects of a thin InGaAs layer on carrier dynamics of InAs quantum dots. Journal of Applied Physics, 2010, 108, 093521.	1.1	13
68	Nearly Perfect Electrical Activation Efficiencies from Silicon-Implanted Al x Ga1â^'x N with High Aluminum Mole Fraction. Journal of Electronic Materials, 2009, 38, 153-158.	1.0	3
69	Structural and optical characterization of Si-implanted Al0.18Ga0.82N. Solid State Communications, 2009, 149, 319-321.	0.9	3
70	Optical Properties of InAs Quantum Dots Grown by Using Indium Interruption Growth Technique. Applied Science and Convergence Technology, 2009, 18, 474-480.	0.3	5
71	Activation Studies of Si-Implanted Al0.45Ga0.55N by Using Cathodoluminescence and Temperature-Dependent Hall-Effect Measurements. Journal of the Korean Physical Society, 2009, 55, 2465-2469.	0.3	0
72	Magnetic Properties of Transition Metal-implanted ZnO Nanotips Grown on Sapphire and Quartz. Journal of Magnetics, 2008, 13, 19-22.	0.2	0

#	Article	IF	CITATIONS
73	Effects of a thin (In)GaAs layer on the structural and optical properties of InAsâ^•InAlGaAs quantum dots. Journal of Applied Physics, 2007, 102, 113526.	1.1	4
74	Formation characteristics of shape-engineered InAs/InAlGaAs quantum dots grown on InP substrates. Journal of Applied Physics, 2007, 102, 073501.	1.1	7
75	Indium incorporation effects on luminescence mechanisms in quaternary AlInGaN layers. Solid State Communications, 2007, 142, 569-572.	0.9	5
76	Implantation damage recovery and carrier activation studies of Si-implanted Al0.18Ga0.82N by temperature dependent Hall-effect measurements. Physica Status Solidi C: Current Topics in Solid State Physics, 2007, 4, 2613-2616.	0.8	0
77	Optical Investigation of Quaternary AlxInyGa1-x-yN Epilayers Grown by Using Pulsed Metalorganic Chemical Vapor Deposition. Journal of the Korean Physical Society, 2007, 50, 59-63.	0.3	1
78	Ferromagnetic Properties of Nickel-Implanted Al0.35Ga0.65N. Journal of the Korean Physical Society, 2007, 51, 1707-1712.	0.3	0
79	Room temperature ferromagnetic properties of transition metal implanted Al0.35Ga0.65N. Journal of Alloys and Compounds, 2006, 423, 184-187.	2.8	8
80	Electrical characterization of Si-ion implanted AlxGa1-xN annealed at lower temperatures. Physica Status Solidi (A) Applications and Materials Science, 2006, 203, 1650-1653.	0.8	0
81	Electrical and optical activation studies of high dose Si-implanted Al0.18Ga0.82N. Solid State Communications, 2006, 139, 284-288.	0.9	0
82	Electrical and optical characterization studies of lower dose Si-implanted AlxGa1â^'xN. Journal of Electronic Materials, 2006, 35, 647-653.	1.0	8
83	Optical study of implantation damage recovery from Si-implanted GaN. Solid State Communications, 2005, 133, 213-217.	0.9	8
84	Electrical and optical activation studies of Si-implanted GaN. Journal of Electronic Materials, 2005, 34, 1157-1164.	1.0	21
85	Radiation-induced electron traps in Al0.14Ga0.86N by 1 MeV electron radiation. Applied Physics Letters, 2005, 86, 261906.	1.5	17
86	Ion-beam-induced sharpening of ZnO nanotips. Applied Physics Letters, 2004, 85, 1247-1249.	1.5	4
87	High electrical activation efficiency obtained from Si-implanted Al0.18Ga0.82N. Journal of Applied Physics, 2004, 96, 6277-6280.	1.1	8
88	Indium-incorporation-induced transformation of optical, photoluminescence and lasing properties of InGaN epilayers. Solid State Communications, 2003, 126, 329-332.	0.9	7
89	Investigation of the effect of indium mole fractions on recombination processes in AllnGaN layers grown by pulsed MOCVD. Solid State Communications, 2003, 127, 661-665.	0.9	7
90	Annealing studies of Si-implanted Al0.25Ga0.75N. Physica Status Solidi C: Current Topics in Solid State Physics, 2003, 0, 2593-2596.	0.8	7

#	Article	IF	CITATIONS
91	Influence of Indium Incorporation on Recombination Dynamics in AlInGaN Layers Grown by Pulsed Metal Organic Chemical Vapor Deposition. Materials Research Society Symposia Proceedings, 2003, 764, 1.	0.1	0
92	Time-resolved photoluminescence of quaternary AlInGaN-based multiple quantum wells. Applied Physics Letters, 2002, 80, 3943-3945.	1.5	17
93	Pulsed Metalorganic Chemical Vapor Deposition of Quaternary AlInGaN Layers and Multiple Quantum Wells for Ultraviolet Light Emission. Japanese Journal of Applied Physics, 2002, 41, 1924-1928.	0.8	25
94	Luminescence mechanisms in quaternary AlxInyGa1â^'xâ^'yN materials. Applied Physics Letters, 2002, 80, 3730-3732.	1.5	42
95	UV Emission Mechanisms in Quaternary AlInGaN Epilayers and Multiple Quantum Wells. Materials Research Society Symposia Proceedings, 2002, 722, 171.	0.1	0
96	Localization of carriers and polarization effects in quaternary AlInGaN multiple quantum wells. Applied Physics Letters, 2001, 79, 4375-4377.	1.5	17
97	Cathodoluminescence study of InxGa1â^'xN quantum wells. Journal of Applied Physics, 2001, 89, 2839-2842.	1.1	2
98	Polarization Effects in the Photoluminescence of AlGaN and AlInGaN Based Quantum Well Structures. Materials Research Society Symposia Proceedings, 2001, 693, 762.	0.1	0
99	Optical properties and recombination dynamics of InGaN/GaN multiple quantum wells with Si-doped barriers. Solid State Communications, 2001, 118, 547-551.	0.9	1
100	Optical properties of InGaN/GaN double quantum wells with varying well thickness. Solid State Communications, 2001, 120, 509-514.	0.9	7
101	Effects of Si-doping in the barriers on the recombination dynamics in In0.15Ga0.85N/In0.015Ga0.985N quantum wells. Journal of Applied Physics, 2001, 89, 634-637.	1.1	21
102	Time-Resolved Photoluminescence Measurements of In0.15Ga0.85N/In0.015Ga0.985N Quantum Wells with Si-doped Barriers. Materials Research Society Symposia Proceedings, 2000, 639, 9101.	0.1	0
103	Silicon doping effect on the optical properties of In0.15Ga0.85N/In0.015Ga0.985N quantum wells. Solid State Communications, 2000, 116, 675-678.	0.9	18
104	Structural and optical properties of GaxIn1â^'xP layers grown by chemical beam epitaxy. Journal of Electronic Materials, 1998, 27, 409-413.	1.0	8
105	Electrical and optical activation studies of Si-implanted Al/sub x/Ga/sub 1-x/N by Hall-effect and photoluminescence measurements. , 0, , .		0