Jong-Su Seo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7944766/publications.pdf Version: 2024-02-01

LONG-SU SEO

#	Article	IF	CITATIONS
1	Boron nitride/carbon nanotube composite paper for self-activated chemiresistive detection. Sensors and Actuators B: Chemical, 2022, 355, 131273.	4.0	7
2	Bioconcentration and Metabolism of the New Herbicide Methiozolin in Ricefish (Oryzias latipes). Journal of Agricultural and Food Chemistry, 2021, 69, 9536-9544.	2.4	2
3	Improved Method for the Determination of Polychlorinated Dibenzo-p-dioxins and Dibenzofurans (PCDD/Fs) in Sanitary Napkins. Analytical Letters, 2020, 53, 273-289.	1.0	6
4	Plasma Lipidomics Reveals Insights into Anti-Obesity Effect of Chrysanthemum morifolium Ramat Leaves and Its Constituent Luteolin in High-Fat Diet-Induced Dyslipidemic Mice. Nutrients, 2020, 12, 2973.	1.7	16
5	Proteomic analysis of whole-body responses in medaka (<i>Oryzias latipes</i>) exposed to benzalkonium chloride. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2020, 55, 1387-1397.	0.9	8
6	Integrated metabolomics and lipidomics reveals high accumulation of polyunsaturated lysoglycerophospholipids in human lung fibroblasts exposed to fine particulate matter. Ecotoxicology and Environmental Safety, 2020, 202, 110896.	2.9	10
7	The impact of phenanthrene on membrane phospholipids and its biodegradation by Sphingopyxis soli. Ecotoxicology and Environmental Safety, 2020, 192, 110254.	2.9	19
8	Anaerobic Degradation of [¹⁴ C]Methiozolin under Aquatic Sediment Conditions. Journal of Agricultural and Food Chemistry, 2019, 67, 13534-13543.	2.4	4
9	Proteomic analyses of the interaction between the plantâ€growth promoting rhizobacterium <i>Paenibacillus polymyxa</i> E681 and <i>Arabidopsis thaliana</i> . Proteomics, 2016, 16, 122-135.	1.3	65
10	Establishment of retention index library on gas chromatography-mass spectrometry for nontargeted metabolite profiling approach. Journal of the Korean Society for Applied Biological Chemistry, 2013, 56, 87-90.	0.9	5
11	Multi-residue method development of 8 benzoylurea insecticides in mandarin and apple using high performance liquid chromatography and liquid chromatography-tandem mass spectrometry. Journal of the Korean Society for Applied Biological Chemistry, 2013, 56, 47-54.	0.9	6
12	Multiple degradation pathways of phenanthrene by Stenotrophomonas maltophilia C6. International Biodeterioration and Biodegradation, 2013, 79, 98-104.	1.9	88
13	Metabolomic and proteomic insights into carbaryl catabolism by Burkholderia sp. C3 and degradation of ten N-methylcarbamates. Biodegradation, 2013, 24, 795-811.	1.5	45
14	Multiple pathways in the degradation of dibenzothiophene by Mycobacterium aromativorans strain JS19b1T. Journal of the Korean Society for Applied Biological Chemistry, 2012, 55, 613-618.	0.9	9
15	Development and validation of an LC/MS/MS method for determination of valproic acid and its metabolite 2-propyl-4-pentenoic acid in monkey plasma. Journal of the Korean Society for Applied Biological Chemistry, 2012, 55, 13-17.	0.9	2
16	Mycobacterium aromativorans JS19b1T degrades phenanthrene through C-1,2, C-3,4 and C-9,10 dioxygenation pathways. International Biodeterioration and Biodegradation, 2012, 70, 96-103.	1.9	33
17	Comparative Protein and Metabolite Profiling Revealed a Metabolic Network in Response to Multiple Environmental Contaminants in Mycobacterium aromativorans JS19b1 ^T . Journal of Agricultural and Food Chemistry, 2011, 59, 2876-2882.	2.4	17
18	Degradation of Pyrene by Mycobacterium aromativorans Strain JS19b1. Journal of the Korean Society for Applied Biological Chemistry, 2010, 53, 323-329.	0.9	10

Jong-Su Seo

#	Article	IF	CITATIONS
19	Polycyclic aromatic hydrocarbon-degrading species isolated from Hawaiian soils: Mycobacterium crocinum sp. nov., Mycobacterium pallens sp. nov., Mycobacterium rutilum sp. nov., Mycobacterium aromaticivorans sp. nov International Journal of Systematic and Evolutionary Microbiology. 2009, 59, 378-387.	0.8	105
20	Bacterial Degradation of Aromatic Compounds. International Journal of Environmental Research and Public Health, 2009, 6, 278-309.	1.2	729
21	Bioconcentration of Pirimiphos-methyl in Killifish (Oryzias latipes). Korean Journal of Environmental Agriculture, 2009, 28, 453-461.	0.0	3
22	Isolation and Characterization of Bacteria Capable of Degrading Polycyclic Aromatic Hydrocarbons (PAHs) and Organophosphorus Pesticides from PAH-Contaminated Soil in Hilo, Hawaii. Journal of Agricultural and Food Chemistry, 2007, 55, 5383-5389.	2.4	94
23	Fluoranthene metabolism and associated proteins inMycobacterium sp. JS14. Proteomics, 2007, 7, 2059-2069.	1.3	60
24	Phenanthrene degradation in Arthrobacter sp. P1-1: Initial 1,2-, 3,4- and 9,10-dioxygenation, and meta- and ortho-cleavages of naphthalene-1,2-diol after its formation from naphthalene-1,2-dicarboxylic acid and hydroxyl naphthoic acids. Chemosphere, 2006, 65, 2388-2394.	4.2	109
25	Degradation of dibenzothiophene and carbazole by Arthrobacter sp. P1-1. International Biodeterioration and Biodegradation, 2006, 58, 36-43.	1.9	55
26	Degradation of phenanthrene by Burkholderia sp. C3: initial 1,2- and 3,4-dioxygenation and meta- and ortho-cleavage of naphthalene-1,2-diol. Biodegradation, 2006, 18, 123-131.	1.5	78
27	Degradation pathways of phenanthrene by Sinorhizobium sp. C4. Applied Microbiology and Biotechnology, 2006, 71, 935-941.	1.7	75