List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/794472/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Polylactide/exfoliated graphite nanocomposites with enhanced thermal stability, mechanical modulus, and electrical conductivity. Journal of Polymer Science, Part B: Polymer Physics, 2010, 48, 850-858.	2.4	283
2	Highly Effective Electromagnetic Interference Shielding Materials based on Silver Nanowire/Cellulose Papers. ACS Applied Materials & Interfaces, 2016, 8, 13123-13132.	4.0	241
3	Superhydrophobicity of cotton fabrics treated with silica nanoparticles and water-repellent agent. Journal of Colloid and Interface Science, 2009, 337, 170-175.	5.0	230
4	High Performance Flexible Piezoelectric Nanogenerators based on BaTiO ₃ Nanofibers in Different Alignment Modes. ACS Applied Materials & Interfaces, 2016, 8, 15700-15709.	4.0	188
5	Crystalline Structures, Melting, and Crystallization of Linear Polyethylene in Cylindrical Nanopores. Macromolecules, 2007, 40, 6617-6623.	2.2	179
6	Removal of lead ions in aqueous solution by hydroxyapatite/polyurethane composite foams. Journal of Hazardous Materials, 2008, 152, 1285-1292.	6.5	164
7	Performance enhancements in poly(vinylidene fluoride)-based piezoelectric nanogenerators for efficient energy harvesting. Nano Energy, 2019, 56, 662-692.	8.2	161
8	From Homogeneous to Heterogeneous Nucleation of Chain Molecules under Nanoscopic Cylindrical Confinement. Physical Review Letters, 2007, 98, 136103.	2.9	141
9	Preparation and lead ion removal property of hydroxyapatite/polyacrylamide composite hydrogels. Journal of Hazardous Materials, 2008, 159, 294-299.	6.5	139
10	Carbon nanotube/cellulose papers with high performance in electric heating and electromagnetic interference shielding. Composites Science and Technology, 2016, 131, 77-87.	3.8	126
11	Effects of grafted chain length on mechanical and electrical properties of nanocomposites containing polylactide-grafted carbon nanotubes. Composites Science and Technology, 2010, 70, 776-782.	3.8	114
12	Influences of poly(lactic acid)â€grafted carbon nanotube on thermal, mechanical, and electrical properties of poly(lactic acid). Polymers for Advanced Technologies, 2009, 20, 631-638.	1.6	113
13	Structure and electric heating performance of graphene/epoxy composite films. European Polymer Journal, 2013, 49, 1322-1330.	2.6	104
14	Microstructure and Performance of Multiwalled Carbon Nanotube/ <i>m</i> -Aramid Composite Films as Electric Heating Elements. ACS Applied Materials & Interfaces, 2013, 5, 6527-6534.	4.0	99
15	Poly(ethylene terephthalate)/exfoliated graphite nanocomposites with improved thermal stability, mechanical and electrical properties. Composites Part A: Applied Science and Manufacturing, 2011, 42, 560-566.	3.8	90
16	Preparation and acid dye adsorption behavior of polyurethane/chitosan composite foams. Fibers and Polymers, 2009, 10, 636-642.	1.1	85
17	Enhanced electrical conductivity, mechanical modulus, and thermal stability of immiscible polylactide/polypropylene blends by the selective localization of multi-walled carbon nanotubes. Composites Science and Technology, 2014, 103, 78-84.	3.8	80
18	Preparation and properties of polypropylene nanocomposites reinforced with exfoliated graphene. Fibers and Polymers, 2012, 13, 507-514.	1.1	79

#	Article	IF	CITATIONS
19	Superhydrophobic PLA fabrics prepared by UV photo-grafting of hydrophobic silica particles possessing vinyl groups. Journal of Colloid and Interface Science, 2010, 344, 584-587.	5.0	63
20	Microstructures and piezoelectric performance of eco-friendly composite films based on nanocellulose and barium titanate nanoparticle. Composites Part B: Engineering, 2019, 168, 58-65.	5.9	61
21	Multiwalled carbon nanotube/polydimethylsiloxane composite films as high performance flexible electric heating elements. Applied Physics Letters, 2014, 105, .	1.5	60
22	Highly elastic and transparent multiwalled carbon nanotube/polydimethylsiloxane bilayer films as electric heating materials. Materials and Design, 2015, 86, 72-79.	3.3	60
23	Cocrystallization Behavior of Poly(butylene terephthalate-co-butylene 2,6-naphthalate) Random Copolymers. Macromolecules, 2000, 33, 9705-9711.	2.2	58
24	Effects of mixed carbon filler composition on electric heating behavior of thermally-cured epoxy-based composite films. Composites Part A: Applied Science and Manufacturing, 2014, 56, 1-7.	3.8	56
25	Roles of carbon nanotube and BaTiO 3 nanofiber in the electrical, dielectric and piezoelectric properties of flexible nanocomposite generators. Composites Science and Technology, 2017, 144, 1-10.	3.8	55
26	On the preparation of lecithin-stabilized oil-in-water emulsions by multi-stage premix membrane emulsification. Journal of Food Engineering, 2008, 89, 164-170.	2.7	53
27	Structures, electrical and mechanical properties of epoxy composites reinforced with MWCNT-coated basalt fibers. Composites Part A: Applied Science and Manufacturing, 2019, 123, 123-131.	3.8	53
28	Electrically conductive and strong cellulose-based composite fibers reinforced with multiwalled carbon nanotube containing multiple hydrogen bonding moiety. Composites Science and Technology, 2016, 123, 57-64.	3.8	51
29	High performance cellulose acetate propionate composites reinforced with exfoliated graphene. Composites Part B: Engineering, 2012, 43, 3412-3418.	5.9	50
30	Regenerated cellulose/multiwalled carbon nanotube composite films with efficient electric heating performance. Carbohydrate Polymers, 2015, 133, 456-463.	5.1	49
31	Preparation and characterization of nanocomposites based on polylactides tethered with polyhedral oligomeric silsesquioxane. Journal of Applied Polymer Science, 2010, 115, 1039-1046.	1.3	47
32	Structures, electrical, and dielectric properties of PVDF-based nanocomposite films reinforced with neat multi-walled carbon nanotube. Macromolecular Research, 2012, 20, 920-927.	1.0	47
33	Synergistic effect of hybrid carbon fillers on electric heating behavior of flexible polydimethylsiloxane-based composite films. Composites Science and Technology, 2015, 106, 134-140.	3.8	43
34	Cocrystallization behavior of poly(hexamethylene terephthalate-co-hexamethylene 2,6-naphthalate) random copolymers. Polymer, 2002, 43, 5263-5270.	1.8	38
35	Preparation and crystallization behavior of polylactide nanocomposites reinforced with POSS-modified montmorillonite. Fibers and Polymers, 2011, 12, 180-189.	1.1	38
36	Core-shell type composites based on polyimide-derived carbon nanofibers and manganese dioxide for self-standing and binder-free supercapacitor electrode applications. Composites Science and Technology, 2020, 196, 108212.	3.8	36

#	Article	IF	CITATIONS
37	Influences of physical aging on enthalpy relaxation behavior, gas permeability, and dynamic mechanical property of polylactide films with various D-isomer contents. Macromolecular Research, 2010, 18, 346-351.	1.0	35
38	Strain-Induced Enthalpy Relaxation in Poly(lactic acid). Macromolecules, 2010, 43, 25-28.	2.2	34
39	Structures and physical properties of graphene/PVDF nanocomposite films prepared by solution-mixing and melt-compression. Fibers and Polymers, 2013, 14, 1332-1338.	1.1	34
40	Synthesis and Crystallization Behavior of Poly(m-methylene) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 627 Td (2,6-r 36, 4051-4059.	aphthalat 2.2	e-co-1,4-cyclo 31
41	Freestanding supercapacitor electrode applications of carbon nanofibers based on polyacrylonitrile and polyhedral oligomeric silsesquioxane. Materials and Design, 2018, 139, 72-80.	3.3	31
42	A facile method for transparent carbon nanosheets heater based on polyimide. RSC Advances, 2016, 6, 52509-52517.	1.7	30
43	Influences of cellulose nanofibril on microstructures and physical properties of waterborne polyurethane-based nanocomposite films. Carbohydrate Polymers, 2019, 225, 115233.	5.1	28
44	Effect of uniaxial drawing on surface chain structure and surface tension of poly(trimethylene) Tj ETQq0 0 0 rgB	T /Qverloc	k 10 Tf 50 46
45	Investigation of microstructure and electric heating behavior of hybrid polymer composite films based on thermally stable polybenzimidazole and multiwalled carbon nanotube. Polymer, 2015, 59, 102-109.	1.8	24
46	Electromagnetic Interference Shielding and Electrothermal Performance of MXeneâ€Coated Cellulose Hybrid Papers and Fabrics Manufactured by a Facile Scalable Dipâ€Dry Coating Process. Advanced Engineering Materials, 2021, 23, 2100548.	1.6	24
47	Melting and crystallization behavior of poly(trimethylene 2,6-naphthalate). Polymer, 2003, 44, 3259-3267.	1.8	23
48	Spectroscopic Study on Morphology Evolution in Polymer Blends. Macromolecules, 2005, 38, 2876-2882.	2.2	23
49	Influences of exfoliated graphite on structures, thermal stability, mechanical modulus, and electrical resistivity of poly(butylene terephthalate). Journal of Applied Polymer Science, 2012, 125, E532.	1.3	23
50	<scp>UV</scp> ured epoxy/graphene nanocomposite films: preparation, structure and electric heating performance. Polymer International, 2014, 63, 1895-1901.	1.6	23
51	Superhydrophobic PET fabrics achieved by silica nanoparticles and water-repellent agent. Fibers and Polymers, 2010, 11, 976-981.	1.1	22
52	Preparation and Characterization of Highâ€Performance Poly(trimethylene terephthalate) Nanocomposites Reinforced with Exfoliated Graphite. Macromolecular Materials and Engineering, 2011, 296, 159-167.	1.7	22
53	Thermomechanical and electrical properties of PDMS/MWCNT composite films crosslinked by electron beam irradiation. Journal of Materials Science, 2015, 50, 5599-5608.	1.7	22
54	Cellulose acetate/multiwalled carbon nanotube nanocomposites with improved mechanical, thermal, and electrical properties. Journal of Applied Polymer Science, 2010, 118, 2475-2481.	1.3	21

#	Article	IF	CITATIONS
55	Microstructure, thermal and mechanical properties of composite films based on carboxymethylated nanocellulose and polyacrylamide. Carbohydrate Polymers, 2019, 211, 84-90.	5.1	21
56	Fabrication and electrochemical characterization of polyimideâ€derived carbon nanofibers for selfâ€standing supercapacitor electrode materials. Journal of Applied Polymer Science, 2019, 136, 47846.	1.3	21
57	New Type of Dual Solid-State Thermochromism: Modulation of Intramolecular Charge Transfer by Intermolecular Ï€â^Ï€ Interactions, Kinetic Trapping of the Aci-Nitro Group, and Reversible Molecular Locking. Journal of Physical Chemistry A, 2009, 113, 11354-11366.	1.1	20
58	Enhanced mechanical and anisotropic thermal conductive properties of polyimide nanocomposite films reinforced with hexagonal boron nitride nanosheets. Journal of Applied Polymer Science, 2021, 138, 50324.	1.3	19
59	Synthesis and isodimorphic cocrystallization behavior of poly(1,4-cyclohexylenedimethylene) Tj ETQq1 1 0.78431 Science, Part B: Polymer Physics, 2004, 42, 177-187.	4 rgBT /O [•] 2.4	verlock 10 Tí 18
60	Thermochromism of a novel organic compound in the solid state via crystal-to-crystal transformation. Journal of Molecular Structure, 2006, 825, 70-78.	1.8	18
61	Electric heating films based on m-aramid nanocomposites containing hybrid fillers of graphene and carbon nanotube. Journal of Materials Science, 2013, 48, 4041-4049.	1.7	18
62	Thermal and electrical properties of poly(phenylene sulfide)/carbon nanotube nanocomposite films with a segregated structure. Composites Part A: Applied Science and Manufacturing, 2016, 91, 77-84.	3.8	17
63	Cocrystallization of poly(1,4-cyclohexylenedimethylene terephthalate-co-hexamethylene) Tj ETQq1 1 0.784314 rg	BT /Overlo	ock_10 Tf 50
64	Factors Influencing Curing Behavior in Phase-Separated Structures. Macromolecules, 2005, 38, 2889-2896.	2.2	16
65	Tensile behavior and structural evolution of poly(lactic acid) monofilaments in glass transition region. Fibers and Polymers, 2009, 10, 687-693.	1.1	16
66	Fabrication and electric heating behavior of carbon thin films from water-soluble poly(vinyl alcohol) via simple dry and ambient stabilization and carbonization. Applied Surface Science, 2018, 456, 561-567.	3.1	16
67	Chitin Nanofiber-Reinforced Waterborne Polyurethane Nanocomposite Films with Enhanced Thermal and Mechanical Performance. Carbohydrate Polymers, 2021, 258, 117728.	5.1	16
68	Synthesis, structure, and thermal property of poly(trimethylene terephthalate-co-trimethylene) Tj ETQq0 0 0 rgBT	/Qverlock	2 10 Tf 50 22
69	Influences of tensile drawing on structures, mechanical, and electrical properties of wet-spun multi-walled carbon nanotube composite fiber. Macromolecular Research, 2012, 20, 650-657.	1.0	15
70	Crystal structure of poly(pentamethylene 2,6-naphthalate). Polymer, 2002, 43, 7315-7323.	1.8	14
71	Preparation, structure and properties of poly(p-phenylene benzobisoxazole) composite fibers reinforced with graphene. Macromolecular Research, 2014, 22, 279-286.	1.0	14
	Thermal Analysis on the Stabilization Debaying of Tomany Canalyman Decad on Academic Stabil		

⁷²Thermal Analysis on the Stabilization Behavior of Ternary Copolymers Based on Acrylonitrile, Methyl
Acrylate and Itaconic Acid. Fibers and Polymers, 2018, 19, 2439-2448.1.114

#	Article	IF	CITATIONS
73	Effects of wet-spinning conditions on structures, mechanical and electrical properties of multi-walled carbon nanotube composite fibers. Fibers and Polymers, 2012, 13, 443-449.	1.1	13
74	Carbon nanotube/polyimide bilayer thin films with high structural stability, optical transparency, and electric heating performance. RSC Advances, 2016, 6, 30106-30114.	1.7	13
75	Electrothermal application of novolac-derived carbon micropatterns prepared by proton beam lithography and carbonization. Applied Surface Science, 2019, 471, 328-334.	3.1	13
76	Fabrication and Characterization of Piezoelectric Composite Nanofibers Based on Poly(vinylidene) Tj ETQq0 0 0 r 473-479.	gBT /Overl 1.1	ock 10 Tf 50 13
77	Segmental motions and associated dynamic mechanical thermal properties of a series of copolymers based on poly(hexamethylene terephthalate) and poly(1,4-cyclohexylenedimethylene terephthalate). Macromolecular Research, 2006, 14, 416-423.	1.0	12
78	Crystal structure of poly(octamethylene terephthalate) determined by Xâ€ray fiber diffraction and molecular modeling. Journal of Polymer Science, Part B: Polymer Physics, 2009, 47, 276-283.	2.4	12
79	Spectroscopic Analyses on Chain Structure and Thermal Stabilization Behavior of Acrylonitrile/Methyl Acrylate/Itaconic Acid-based Copolymers Synthesized by Aqueous Suspension Polymerization. Fibers and Polymers, 2018, 19, 2007-2015.	1.1	12
80	Effects of Poly(ethylene-co-glycidyl methacrylate) on the Microstructure, Thermal, Rheological, and Mechanical Properties of Thermotropic Liquid Crystalline Polyester Blends. Polymers, 2020, 12, 2124.	2.0	12
81	Impacts of cellulose nanofibril and physical aging on the enthalpy relaxation behavior and dynamic mechanical thermal properties of Poly(lactic acid) composite films. Polymer, 2020, 202, 122677.	1.8	12
82	Microstructure and Thermoelectric Characterization of Composite Nanofiber Webs Derived from Polyacrylonitrile and Sodium Cobalt Oxide Precursors. Scientific Reports, 2020, 10, 9633.	1.6	12
83	Poly(Ether Amide)-Derived, Nitrogen Self-Doped, and Interfused Carbon Nanofibers as Free-Standing Supercapacitor Electrode Materials. ACS Applied Energy Materials, 2021, 4, 1517-1526.	2.5	12
84	Synergistic effect of polyurethaneâ€coated carbon fiber and electron beam irradiation on the thermal/mechanical properties and longâ€term durability of polyamideâ€based thermoplastic composites. Polymer Composites, 2022, 43, 1685-1697.	2.3	12
85	Crystal structure identification of poly(trimethylene 2,6-naphthalate) β-form crystal by X-ray diffraction and molecular modeling. Polymer, 2004, 45, 379-384.	1.8	11
86	Microstructure and electrothermal characterization of transparent reduced graphene oxide thin films manufactured by spin-coating and thermal reduction. Results in Physics, 2021, 24, 104107.	2.0	11
87	Crystal Structure of Poly (hexamethylene 2,6-naphthalate) Polymer Journal, 2001, 33, 913-919.	1.3	10
88	Crystal Structure Determination of Poly(1,4-trans-cylcohexylenedimethylene 2,6-naphthalate) by X-ray Diffraction and Molecular Modeling. Macromolecules, 2003, 36, 5201-5207.	2.2	10
89	The effect of flexible chain length on thermal and mechanical properties of poly(m-methylene) Tj ETQq1 1 0.7843	814.rgBT /0 1.8	Overlock 10
90	Poly(ethylene 2,6-naphthalate)/MWNT nanocomposites prepared by in situ polymerization: Rheological and mechanical properties. Fibers and Polymers, 2010, 11, 1-7.	1.1	10

#	Article	IF	CITATIONS
91	Poly(vinyl alcohol)/montmorillonite/silver hybrid nanoparticles prepared from aqueous solutions by the electrospraying method. Journal of Composite Materials, 2013, 47, 3367-3378.	1.2	10
92	Influence of Surface Property on the Crystallization of Hentetracontane under Nanoscopic Cylindrical Confinement. Journal of Physical Chemistry B, 2013, 117, 5978-5988.	1.2	10
93	Highly Tough and Thermally Stable Polylactide Blends Compatibilized with Glycidyl Methacrylateâ€Grafted Polypropylene. Macromolecular Materials and Engineering, 2021, 306, 2100122.	1.7	10
94	PAN/lignin and LaMnO3-derived hybrid nanofibers for self-standing high-performance energy storage electrode materials. Journal of Materials Science, 2021, 56, 19636-19650.	1.7	10
95	Flexible and self-standing polyimide/lignin-derived carbon nanofibers for high-performance supercapacitor electrode material applications. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2022, 275, 115530.	1.7	10
96	Lead ion removal characteristics of poly(lactic acid)/hydroxyapatite composite foams prepared by supercritical CO ₂ process. Polymer Composites, 2011, 32, 1408-1415.	2.3	9
97	Effects of Chain Orientation and Packing on the Photoluminescence and Photothermal Properties of Polybenzimidazole Fibers with Meta-Linkage. Macromolecules, 2015, 48, 8823-8830.	2.2	9
98	Effects of plasticizer on structures, nonâ€isothermal crystallization, and rheological properties of polyarylates. Journal of Applied Polymer Science, 2018, 135, 45704.	1.3	9
99	Analysis of the Multistep Solidification Process in Polymer Blends. Macromolecules, 2006, 39, 274-280.	2.2	8
100	Structures and cocrystallization behavior of copolyesters based on poly(octamethylene) Tj ETQq0 0 0 rgBT /Ove	erlock 10 T 1.8	f 50 382 Td (t
101	Thermoelectric and Photothermoelectric Properties of Nanocomposite Films Based on Polybenzimidazole and Carbon Nanotubes. ACS Applied Electronic Materials, 2022, 4, 386-393.	2.0	8
102	Effects of Polyester-Poor Phase Microstructures on Viscosity Development of Polymer Blends. Macromolecules, 2006, 39, 4907-4913.	2.2	7
103	Lamellar arrangements of linear polyethylene in ultrathin films. Journal of Applied Polymer Science, 2012, 123, 2558-2565.	1.3	7
104	Synthesis and characterization of poly(2-cyano-1,4-phenylene terephthalamide) and its copolymers by phosphorylation-assisted polycondensation reaction. Fibers and Polymers, 2014, 15, 2447-2452.	1.1	7
105	Facile construction of electrically-conductive carbon patterns from a cheap coal-type pitch and their application to electric heating devices. Journal of Industrial and Engineering Chemistry, 2016, 39, 188-193.	2.9	7
106	Thermal Insulation Performance of Cotton and PET-based Hybrid Fabrics Impregnated with Silica Aerogel via a Facile Dip-dry Process. Fibers and Polymers, 2018, 19, 854-860.	1.1	7
107	Effect of alkyl chain length on thermochromism of novel nitro compounds. Fibers and Polymers, 2007, 8, 234-236.	1.1	6
108	Microstructure and electrical property of epoxy/graphene/MWCNT hybrid composite films manufactured by UV-curing. Macromolecular Research, 2014, 22, 1059-1065.	1.0	6

#	Article	IF	CITATIONS
109	Structure, electrical and mechanical properties of polyamide 66/acid-treated MWCNT composite films prepared by solution mixing in the presence of nonionic surfactant. Fibers and Polymers, 2014, 15, 1010-1016.	1.1	6
110	Electrical and dielectric properties of poly(1,3,4-oxdiazole) nanocomposite films with graphene sheets dispersed in layers. Fibers and Polymers, 2015, 16, 2021-2027.	1.1	6
111	Poly(azomethine ether)â€derived carbon nanofibers for selfâ€standing and binderâ€free supercapacitor electrode material applications. Polymers for Advanced Technologies, 2020, 31, 2874-2883.	1.6	6
112	Synthesis and Characterization of Aromatic Poly(azomethine ether)s with Different meta- and para-Phenylene Linkage Contents. Fibers and Polymers, 2020, 21, 238-244.	1.1	6
113	Hybrid Carbon Nanofibers Derived from MXene Nanosheets and Aromatic Poly(ether amide) for Selfâ€Standing Electrochemical Energy Storage Materials. Macromolecular Materials and Engineering, 2022, 307, .	1.7	6
114	Influence of Copolymer Configuration on the Phase Behavior of Ternary Blends. Journal of Physical Chemistry B, 2006, 110, 2541-2548.	1.2	4
115	High performance electric heating polyimide composite films reinforced with acid-treated multiwalled carbon nanotubes. Macromolecular Research, 2015, 23, 1144-1151.	1.0	4
116	Transcrytalline structures and crystallization kinetics of Polyarylate/Nylon6 Islands-in-a-Sea conjugate fibers for high performance thermoplastic composite applications. Fibers and Polymers, 2016, 17, 827-835.	1.1	4
117	Transparent Electric Heaters Based on Photoresistâ€Derived Carbon Micropatterns on Quartz Plates. Macromolecular Materials and Engineering, 2018, 303, 1800296.	1.7	4
118	Effect of Polycondensation Catalyst on Fiber Structure Development in High-Speed Melt Spinning of Poly (Ethylene Terephthalate). Polymers, 2019, 11, 1931.	2.0	4
119	Microstructures and mechanical properties of thermoplastic composites based on polyarylate/nylon6 islandsâ€inâ€sea fibers. Polymer Composites, 2019, 40, E484.	2.3	4
120	Electric heating performance of carbon thin films prepared from SU-8 photoresist by deep UV exposure and carbonization. Carbon Letters, 2020, 30, 595-601.	3.3	4
121	Influences of carbon nanotube on structures and properties of compatibilized polylactide/polypropylene blend-based ternary nanocomposites. Journal of Thermoplastic Composite Materials, 2023, 36, 2815-2835.	2.6	4
122	Crystallization-Induced Interconnected Structure in Semicrystallizable Polyester/Polyether Binary Blends. Macromolecules, 2006, 39, 6672-6676.	2.2	3
123	Structural features and electrical properties of carbon fibers manufactured from poly(2-cyano-1,4-phenylene terephthalamide) precursor as a new para-aramid. Macromolecular Research, 2017, 25, 697-703.	1.0	3
124	Structural, Optical and Thermal Characterization of Wholly Aromatic Poly(ether amide)s Synthesized by Phosphorylationâ€Based Condensation Polymerization. ChemistrySelect, 2020, 5, 10425-10431.	0.7	3
125	Microstructures and electrothermal characterization of aromatic poly(azomethine ether)â€derived carbon films. Journal of Applied Polymer Science, 2020, 137, 49345.	1.3	3
126	Enhanced thermal stability and long-term mechanical durability at elevated temperatures of thermotropic liquid crystal polyester/glass fiber composites. Mechanics of Advanced Materials and Structures, 2022, 29, 6060-6069.	1.5	3

#	Article	IF	CITATIONS
127	Morphology evolution and associated curing kinetics in reactive blends. International Journal of Adhesion and Adhesives, 2006, 26, 600-608.	1.4	2
128	Influences of hybrid carbon nanofillers on structures and electrical properties of sulfonated poly(1,3,4â€oxadiazole)â€based composite films. Journal of Applied Polymer Science, 2017, 134, .	1.3	2
129	Electric Heating Performance of Pyrolyzed Photoresist Films Prepared by Proton Irradiation and Pyrolysis. Journal of Nanoscience and Nanotechnology, 2018, 18, 7110-7114.	0.9	2
130	Preparation and Characterization of Fibers Based on Poly(p-Phenylene Benzobisoxazole)s Containing Trifunctional Moiety as Chain Extender. Textile Science and Engineering, 2013, 50, 193-199.	0.4	2
131	Influences of reactive compatibilization on the structure and physical properties of blends based on thermotropic liquid crystalline polyester and poly(1,4â€cyclohexylenedimethylene terephthalate). Polymer Engineering and Science, 2022, 62, 437.	1.5	2
132	Phosphorylationâ€assisted synthesis and characterization of poly(3,4'â€oxydiphenylene furanamide) as a wholly aromatic polyamide using biomassâ€derived 2,5â€furandicarboxylic acid. Journal of Applied Polymer Science, 2022, 139, .	1.3	2
133	Polymorphism and β-form structure of poly(octamethylene 2,6-naphthalate). Polymer, 2008, 49, 1693-1700.	1.8	1
134	Structure and Properties of Thermotropic Polyarylate/Polycarbonate Blends Compatibilized by Catalyst-assisted Ester-Carbonate Interchange Reactions. Fibers and Polymers, 2022, 23, 1770-1778.	1.1	1
135	Microstructures and electrical properties of composite films based on carbon nanotube and para-aramid containing cyano side group. Fibers and Polymers, 2017, 18, 342-348.	1.1	0