Anne-Sophie Duwez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7944357/publications.pdf

Version: 2024-02-01

218381 223531 2,264 67 26 citations g-index h-index papers

70 70 70 3150 docs citations times ranked citing authors all docs

46

#	Article	IF	CITATIONS
1	How to Increase Adhesion Strength of Catechol Polymers to Wet Inorganic Surfaces. Biomacromolecules, 2021, 22, 183-189.	2.6	5
2	Real-Time Fluctuations in Single-Molecule Rotaxane Experiments Reveal an Intermediate Weak Binding State during Shuttling. Journal of the American Chemical Society, 2021, 143, 2348-2352.	6.6	17
3	Radicalâ€Pairing Interactions in a Molecular Switch Evidenced by Ion Mobility Spectrometry and Infrared Ion Spectroscopy. Angewandte Chemie - International Edition, 2021, 60, 10049-10055.	7.2	11
4	Radicalâ€Pairing Interactions in a Molecular Switch Evidenced by Ion Mobility Spectrometry and Infrared Ion Spectroscopy. Angewandte Chemie, 2021, 133, 10137-10143.	1.6	4
5	Single-molecule mechanics of synthetic aromatic amide helices: Ultrafast and robust non-dissipative winding. CheM, 2021, 7, 1333-1346.	5 . 8	13
6	Viologen Tweezers to Probe the Force of Individual Donor–Acceptor π-Interactions. Journal of the American Chemical Society, 2020, 142, 21153-21159.	6.6	15
7	Single-molecule mechanical unfolding experiments reveal a critical length for the formation of \hat{l} ±-helices in peptides. Nanoscale Horizons, 2020, 5, 671-678.	4.1	10
8	Single-molecule force spectroscopy to decipher the early signalling step in membrane-bound penicillin receptors embedded into a lipid bilayer. Nanoscale, 2019, 11, 12275-12284.	2.8	5
9	Dynamic force spectroscopy of synthetic oligorotaxane foldamers. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 9362-9366.	3.3	42
10	Synthetic oligorotaxanes exert high forces when folding under mechanical load. Nature Nanotechnology, 2018, 13, 209-213.	15.6	53
11	Where Ion Mobility and Molecular Dynamics Meet To Unravel the (Un)Folding Mechanisms of an Oligorotaxane Molecular Switch. ACS Nano, 2017, 11, 10253-10263.	7.3	24
12	Force measurements reveal how small binders perturb the dissociation mechanisms of DNA duplex sequences. Nanoscale, 2016, 8, 11718-11726.	2.8	11
13	Liquidâ€Assisted Plasmaâ€Enhanced Chemical Vapor Deposition of Catechol and Quinoneâ€Functionalized Coatings: Insights into the Surface Chemistry and Morphology. Plasma Processes and Polymers, 2016, 13, 843-856.	1.6	23
14	Fast Atmospheric Plasma Deposition of Bioâ€Inspired Catechol/Quinoneâ€Rich Nanolayers to Immobilize NDMâ€1 Enzymes for Water Treatment. Advanced Materials Interfaces, 2016, 3, 1500520.	1.9	30
15	Linear and propeller-like fluoro-isoindigo based donor–acceptor small molecules for organic solar cells. Organic Electronics, 2015, 20, 76-88.	1.4	16
16	Influence of the protein context on the polyglutamine length-dependent elongation of amyloid fibrils. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2015, 1854, 239-248.	1.1	7
17	Low bandgap copolymers based on monofluorinated isoindigo towards efficient polymer solar cells. Polymer Chemistry, 2015, 6, 6040-6049.	1.9	12
18	Unraveling the complexity of the interactions of DNA nucleotides with gold by single molecule force spectroscopy. Nanoscale, 2015, 7, 19528-19533.	2.8	8

#	Article	IF	Citations
19	Single-Molecule Measurements of Synthetic Molecular Machines at Work. Advances in Atom and Single Molecule Machines, 2015, , 1-16.	0.0	0
20	Probing the mobility of catenane rings in single molecules. Chemical Science, 2014, 5, 1449.	3.7	50
21	Robust bio-inspired antibacterial surfaces based on the covalent binding of peptides on functional atmospheric plasma thin films. Journal of Materials Chemistry B, 2014, 2, 5168.	2.9	37
22	A facile and fast electrochemical route to produce functional few-layer graphene sheets for lithium battery anode application. Journal of Materials Chemistry A, 2014, 2, 15298-15302.	5.2	17
23	Biointerface multiparametric study of intraocular lens acrylic materials. Journal of Cataract and Refractive Surgery, 2014, 40, 1536-1544.	0.7	17
24	Collapsing and reswelling kinetics of thermoresponsive polymers on surfaces: a matter of confinement and constraints. Soft Matter, 2014, 10, 7256-7261.	1.2	3
25	The Dynamics of Complex Formation between Amylose Brushes on Gold and Fatty Acids by QCM-D. Biomacromolecules, 2013, 14, 3713-3722.	2.6	19
26	Synthesis of poly(vinyl acetate)-b-poly(vinyl chloride) block copolymers by Cobalt-Mediated Radical Polymerization (CMRP). Polymer Chemistry, 2013, 4, 1685.	1.9	27
27	Ion Mobility Spectrometry Reveals Duplex DNA Dissociation Intermediates. Journal of the American Society for Mass Spectrometry, 2013, 24, 1777-1786.	1.2	19
28	The pulling force of a tiny synthetic molecular machine. Europhysics News, 2013, 44, 20-22.	0.1	2
29	Functional Nanogels as Platforms for Imparting Antibacterial, Antibiofilm, and Antiadhesion Activities to Stainless Steel. Advanced Functional Materials, 2012, 22, 5271-5282.	7.8	71
30	Biomolecule-based antibacterial coating on a stainless steel surface: multilayer film build-up optimization and stability study. Biofouling, 2012, 28, 395-404.	0.8	10
31	Clay and DOPA Containing Polyelectrolyte Multilayer Film for Imparting Anticorrosion Properties to Galvanized Steel. Langmuir, 2012, 28, 2971-2978.	1.6	32
32	Antibacterial Polyelectrolyte Micelles for Coating Stainless Steel. Langmuir, 2012, 28, 7233-7241.	1.6	49
33	Sustainable and bio-inspired chemistry for robust antibacterial activity of stainless steel. Journal of Materials Chemistry, 2011, 21, 7901.	6.7	67
34	A single synthetic small molecule that generates force against a load. Nature Nanotechnology, 2011, 6, 553-557.	15.6	103
35	Poly(acrylic acid) with disulfide bond for the elaboration of pH-responsive brush surfaces. European Polymer Journal, 2010, 46, 195-201.	2.6	25
36	Plasma Surface Fluorination of Hydrogel Materialsâ€"Coating Stability and <i>in vitro</i> Biocompatibility Testing. Soft Materials, 2010, 8, 164-182.	0.8	3

#	Article	IF	CITATIONS
37	Controlled Deposition of Highly Oriented Type I Collagen Mimicking <i>In Vivo</i> Collagen Structures. Langmuir, 2010, 26, 12165-12172.	1.6	31
38	Dithioesters and trithiocarbonates monolayers on gold. Journal of Electron Spectroscopy and Related Phenomena, 2009, 172, 104-106.	0.8	27
39	All-in-one strategy for the fabrication of antimicrobial biomimetic films on stainless steel. Journal of Materials Chemistry, 2009, 19, 4117.	6.7	7 5
40	A Generic Chemical Platform for Molecular Recognition and Stimuliâ€Responsive Probes Based on Scanning Probe Microscopy. Small, 2008, 4, 1101-1104.	5.2	12
41	Microstructure and thermo-responsive behavior of poly(N-isopropylacrylamide) brushes grafted in nanopores of track-etched membranes. Journal of Membrane Science, 2008, 308, 75-86.	4.1	129
42	Molecular cranes swing into action. Nature Nanotechnology, 2008, 3, 188-189.	15.6	5
43	Thermoresponsive Coatings Strongly Adhering to (Semi)conducting Surfaces. Langmuir, 2007, 23, 159-161.	1.6	12
44	One-Step Polymer Grafting from Silicon Nitride SPM Probes:Â From Isolated Chains to Brush Regime. Journal of the American Chemical Society, 2007, 129, 8410-8411.	6.6	22
45	Atomic Force Microscopy Investigation of the Morphology and the Biological Activity of Protein-Modified Surfaces for Bio- and Immunosensors. Analytical Chemistry, 2007, 79, 6488-6495.	3.2	25
46	Fabrication of equally oriented pancake shaped gold nanoparticles by SAM-templated OMCVD and their optical response. Organic Electronics, 2007, 8, 161-174.	1.4	27
47	Tuning the Hydrophilicity of Gold Nanoparticles Templated in Star Block Copolymers. Langmuir, 2006, 22, 6690-6695.	1.6	67
48	Dithioesters and Trithiocarbonates as Anchoring Groups for the "Grafting-To―Approach. Macromolecules, 2006, 39, 2729-2731.	2.2	118
49	First Insights into Electrografted Polymers by AFM-Based Force Spectroscopy. Macromolecules, 2006, 39, 8428-8433.	2.2	37
50	Mechanochemistry: targeted delivery of single molecules. Nature Nanotechnology, 2006, 1, 122-125.	15.6	95
51	Binary mixtures of self-assembled monolayers of 1,8-octanedithiol and 1-octanethiol for a controlled growth of gold nanoparticles. Organic Electronics, 2006, 7, 337-350.	1.4	31
52	Nanoporous Thin Films from Self-Assembled Metallo- Supramolecular Block Copolymers. Advanced Materials, 2005, 17, 1162-1165.	11.1	97
53	Are Electrografted Polymers Chemisorbed or Physisorbed onto their Substrate?. Macromolecular Chemistry and Physics, 2005, 206, 1216-1220.	1.1	11
54	Kinetics of Exchange of Alkanethiol Monolayers Self-Assembled on Polycrystalline Gold. Langmuir, 2005, 21, 6825-6829.	1.6	77

#	Article	IF	CITATIONS
55	Electrografting of Polymers onto AFM Tips: A Novel Approach for Chemical Force Microscopy and Force Spectroscopy. ChemPhysChem, 2004, 5, 147-149.	1.0	23
56	Exploiting electron spectroscopies to probe the structure and organization of self-assembled monolayers: a review. Journal of Electron Spectroscopy and Related Phenomena, 2004, 134, 97-138.	0.8	187
57	Synthesis of Pyrene-Containing Polymers and Noncovalent Sidewall Functionalization of Multiwalled Carbon Nanotubes. Chemistry of Materials, 2004, 16, 4005-4011.	3.2	163
58	Colloidal Micro- and Nanostructures Assembled on Patterned Surfaces. , 2004, , .		0
59	Influence of Molecular Arrangement in Self-Assembled Monolayers on Adhesion Forces Measured by Chemical Force Microscopy. ChemPhysChem, 2003, 4, 1107-1111.	1.0	18
60	Surface Initiated Polymerization of Styrene from a Carboxylic Acid Functionalized Polypyrrole Coated Electrode. Langmuir, 2003, 19, 306-313.	1.6	17
61	Chemical Recognition of Antioxidants and UV-Light Stabilizers at the Surface of Polypropylene: Atomic Force Microscopy with Chemically Modified Tips. Langmuir, 2001, 17, 6351-6357.	1.6	33
62	Mapping Aging Effects on Polymer Surfaces: Specific Detection of Additives by Chemical Force Microscopy. Langmuir, 2001, 17, 8287-8292.	1.6	32
63	Study of Adhesion Properties of Polypropylene Surfaces by Atomic Force Microscopy Using Chemically Modified Tips: Imaging of Functional Group Distribution. Studies in Interface Science, 2001, , 137-150.	0.0	1
64	Vibrational Structure and Organization of Various Self-Assembled Alkanethiol Monolayers: A HREELS Study. Langmuir, 2000, 16, 6569-6576.	1.6	15
65	Probing the surface molecular structure in the UPS spectra of octadecanethiol and 1-cyclohexyl-12-dodecanethiol self-assembled on gold. Journal of Electron Spectroscopy and Related Phenomena, 1996, 81, 55-61.	0.8	9
66	Surface molecular structure of self-assembled alkanethiols evidenced by UPS, synchrotron radiation and HREELS. Journal of Electron Spectroscopy and Related Phenomena, 1995, 76, 523-528.	0.8	8
67	Colloidal Structures on Patterned Surfaces. , 0, , 970-982.		1