Minghui Zhu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7944215/publications.pdf Version: 2024-02-01

Мілсниі 7ни

#	Article	IF	CITATIONS
1	Phthalocyanine-derived catalysts decorated by metallic nanoclusters for enhanced CO2 electroreduction. Green Energy and Environment, 2023, 8, 444-451.	8.7	7
2	Revealing the dependence of CO ₂ activation on hydrogen dissociation ability over supported nickel catalysts. AICHE Journal, 2022, 68, e17458.	3.6	9
3	Selective methane electrosynthesis enabled by a hydrophobic carbon coated copper core–shell architecture. Energy and Environmental Science, 2022, 15, 234-243.	30.8	51
4	Pyridine-grafted nitrogen-doped carbon nanotubes achieving efficient electroreduction of CO ₂ to CO within a wide electrochemical window. Journal of Materials Chemistry A, 2022, 10, 1852-1860.	10.3	12
5	Induced activation of the commercial Cu/ZnO/Al2O3 catalyst for the steam reforming of methanol. Nature Catalysis, 2022, 5, 99-108.	34.4	155
6	Tuning the Metal Electronic Structure of Anchored Cobalt Phthalocyanine via Dualâ€Regulator for Efficient CO ₂ Electroreduction and Zn–CO ₂ Batteries. Advanced Functional Materials, 2022, 32, .	14.9	43
7	Unravelling the metal–support interactions in χ-Fe ₅ C ₂ /MgO catalysts for olefin synthesis directly from syngas. Catalysis Science and Technology, 2022, 12, 762-772.	4.1	4
8	Electrochemical conversion of CO ₂ to syngas with a stable H ₂ /CO ratio in a wide potential range over ligand-engineered metal–organic frameworks. Journal of Materials Chemistry A, 2022, 10, 9954-9959.	10.3	5
9	Nature and Reactivity of Oxygen Species on/in Silver Catalysts during Ethylene Oxidation. ACS Catalysis, 2022, 12, 4375-4381.	11.2	17
10	Structural Buffer Engineering on Metal Oxide for Longâ€Term Stable Seawater Splitting. Advanced Functional Materials, 2022, 32, .	14.9	64
11	Reconstructed covalent organic frameworks. Nature, 2022, 604, 72-79.	27.8	190
12	Operando Highâ€Valence Crâ€Modified NiFe Hydroxides for Water Oxidation. Small, 2022, 18, e2200303.	10.0	44
13	In Operando Identification of In Situ Formed Metalloid Zinc ^{δ+} Active Sites for Highly Efficient Electrocatalyzed Carbon Dioxide Reduction. Angewandte Chemie - International Edition, 2022, 61, .	13.8	25
14	Controlling the Reconstruction of Ni/CeO2 Catalyst during Reduction for Enhanced CO Methanation. Engineering, 2022, 14, 94-99.	6.7	9
15	Effect of MnO ₂ Polymorphs' Structure on Low-Temperature Catalytic Oxidation: Crystalline Controlled Oxygen Vacancy Formation. ACS Applied Materials & Interfaces, 2022, 14, 18525-18538.	8.0	27
16	Syngas to olefins with low CO2 formation by tuning the structure of FeCx-MgO-Al2O3 catalysts. Chemical Engineering Journal, 2022, 450, 137167.	12.7	5
17	A Review on the Waterâ€Gas Shift Reaction over Nickelâ€Based Catalysts. ChemCatChem, 2022, 14, .	3.7	5
18	Combined <i>In Situ</i> Diffuse Reflectance Infrared Fourier Transform Spectroscopy and Kinetic Studies on CO ₂ Methanation Reaction over Ni/Al ₂ O ₃ . Industrial & Engineering Chemistry Research, 2022, 61, 9678-9685.	3.7	7

Мілсниі Zhu

#	Article	IF	CITATIONS
19	Recent Advances in Electrochemical CO ₂ Reduction on Indiumâ€Based Catalysts. ChemCatChem, 2021, 13, 514-531.	3.7	50
20	Vacancy engineering of the nickel-based catalysts for enhanced CO2 methanation. Applied Catalysis B: Environmental, 2021, 282, 119561.	20.2	100
21	Tracking structural evolution: <i>operando</i> regenerative CeOx/Bi interface structure for high-performance CO2 electroreduction. National Science Review, 2021, 8, nwaa187.	9.5	50
22	Curvature-induced electronic tuning of molecular catalysts for CO ₂ reduction. Catalysis Science and Technology, 2021, 11, 2491-2496.	4.1	11
23	Unraveling the Role of Zinc on Bimetallic Fe ₅ C ₂ –ZnO Catalysts for Highly Selective Carbon Dioxide Hydrogenation to High Carbon α-Olefins. ACS Catalysis, 2021, 11, 2121-2133.	11.2	72
24	Revealing the Effect of Sodium on Iron-Based Catalysts for CO ₂ Hydrogenation: Insights from Calculation and Experiment. Journal of Physical Chemistry C, 2021, 125, 7637-7646.	3.1	20
25	Elucidating the reactivity and nature of active sites for tin phthalocyanine during CO ₂ reduction. , 2021, 11, 1191-1197.		4
26	Tunable Carbon Dioxide Activation Pathway over Iron Oxide Catalysts: Effects of Potassium. Industrial & Engineering Chemistry Research, 2021, 60, 8705-8713.	3.7	18
27	Synergistic Effect of Atomically Dispersed Ni–Zn Pair Sites for Enhanced CO ₂ Electroreduction. Advanced Materials, 2021, 33, e2102212.	21.0	155
28	Formation and influence of surface hydroxyls on product selectivity during CO2 hydrogenation by Ni/SiO2 catalysts. Journal of Catalysis, 2021, 400, 228-233.	6.2	27
29	Structure–Activity Relationships of Copper- and Potassium-Modified Iron Oxide Catalysts during Reverse Water–Gas Shift Reaction. ACS Catalysis, 2021, 11, 12609-12619.	11.2	48
30	Strong Metal–Support Interactions between Nickel and Iron Oxide during CO ₂ Hydrogenation. ACS Catalysis, 2021, 11, 11966-11972.	11.2	36
31	Superfast and Waterâ€Insensitive Polymerization on αâ€Amino Acid <i>N</i> â€Carboxyanhydrides to Prepare Polypeptides Using Tetraalkylammonium Carboxylate as the Initiator. Angewandte Chemie, 2021, 133, 26267-26275.	2.0	5
32	Ni-based catalysts derived from Ni-Zr-Al ternary hydrotalcites show outstanding catalytic properties for low-temperature CO2 methanation. Applied Catalysis B: Environmental, 2021, 293, 120218.	20.2	62
33	Superfast and Waterâ€Insensitive Polymerization on αâ€Amino Acid <i>N</i> â€Carboxyanhydrides to Prepare Polypeptides Using Tetraalkylammonium Carboxylate as the Initiator. Angewandte Chemie - International Edition, 2021, 60, 26063-26071.	13.8	33
34	Effect of micropores on the structure and CO ₂ methanation performance of supported Ni/SiO ₂ catalyst. , 2021, 11, 1213-1221.		3
35	Dynamic structure of highly disordered manganese oxide catalysts for low-temperature CO oxidation. Journal of Catalysis, 2021, 401, 115-128.	6.2	31
36	Highly Active and Selective Multicomponent Fe–Cu/CeO ₂ –Al ₂ O ₃ Catalysts for CO ₂ Upgrading via RWGS: Impact of Fe/Cu Ratio. ACS Sustainable Chemistry and Engineering, 2021, 9, 12155-12166.	6.7	30

Мілсниі Zhu

#	Article	IF	CITATIONS
37	Uncovering the electronic effects of zinc on the structure of Fe5C2-ZnO catalysts for CO2 hydrogenation to linear α-olefins. Applied Catalysis B: Environmental, 2021, 295, 120287.	20.2	44
38	Chemical and structural properties of Na decorated Fe5C2-ZnO catalysts during hydrogenation of CO2 to linear α-olefins. Applied Catalysis B: Environmental, 2021, 298, 120567.	20.2	35
39	Probing the role of surface hydroxyls for Bi, Sn and In catalysts during CO2 Reduction. Applied Catalysis B: Environmental, 2021, 298, 120581.	20.2	54
40	Building a stable cationic molecule/electrode interface for highly efficient and durable CO ₂ reduction at an industrially relevant current. Energy and Environmental Science, 2021, 14, 483-492.	30.8	101
41	Ternary Fe–Zn–Al Spinel Catalyst for CO ₂ Hydrogenation to Linear α-Olefins: Synergy Effects between Al and Zn. ACS Sustainable Chemistry and Engineering, 2021, 9, 13818-13830.	6.7	20
42	Activation and deactivation of the commercialâ€ŧype CuO–Cr ₂ O ₃ –Fe ₂ O ₃ high temperature shift catalyst. AICHE Journal, 2020, 66, e16846.	3.6	14
43	Resolving CO2 activation and hydrogenation pathways over iron carbides from DFT investigation. Journal of CO2 Utilization, 2020, 38, 10-15.	6.8	41
44	Promotional effect of Mn-doping on the structure and performance of spinel ferrite microspheres for CO hydrogenation. Journal of Catalysis, 2020, 381, 150-162.	6.2	35
45	Structure–Activity Relationship of the Polymerized Cobalt Phthalocyanines for Electrocatalytic Carbon Dioxide Reduction. Journal of Physical Chemistry C, 2020, 124, 16501-16507.	3.1	16
46	Essential Role of the Support for Nickel-Based CO ₂ Methanation Catalysts. ACS Catalysis, 2020, 10, 14581-14591.	11.2	165
47	Nature of Reactive Oxygen Intermediates on Copper-Promoted Iron–Chromium Oxide Catalysts during CO ₂ Activation. ACS Catalysis, 2020, 10, 7857-7863.	11.2	44
48	Probing the surface of promoted CuO-Cr2O3-Fe2O3 catalysts during CO2 activation. Applied Catalysis B: Environmental, 2020, 271, 118943.	20.2	24
49	Unraveling Highly Tunable Selectivity in CO ₂ Hydrogenation over Bimetallic In-Zr Oxide Catalysts. ACS Catalysis, 2019, 9, 8785-8797.	11.2	139
50	Structure‶unable Copper–Indium Catalysts for Highly Selective CO ₂ Electroreduction to CO or HCOOH. ChemSusChem, 2019, 12, 3955-3959.	6.8	55
51	Fundamental nanoscale surface strategies for robustly controlling heterogeneous nucleation of calcium carbonate. Journal of Materials Chemistry A, 2019, 7, 17242-17247.	10.3	23
52	The study of structure-performance relationship of iron catalyst during a full life cycle for CO2 hydrogenation. Journal of Catalysis, 2019, 378, 51-62.	6.2	60
53	Inductive and electrostatic effects on cobalt porphyrins for heterogeneous electrocatalytic carbon dioxide reduction. Catalysis Science and Technology, 2019, 9, 974-980.	4.1	56
54	Covalently Grafting Cobalt Porphyrin onto Carbon Nanotubes for Efficient CO ₂ Electroreduction. Angewandte Chemie, 2019, 131, 6667-6671.	2.0	26

Мілсниі Zhu

#	Article	IF	CITATIONS
55	Covalently Grafting Cobalt Porphyrin onto Carbon Nanotubes for Efficient CO ₂ Electroreduction. Angewandte Chemie - International Edition, 2019, 58, 6595-6599.	13.8	190
56	Syngas production and trace element emissions from microwave-assisted chemical looping gasification of heavy metal hyperaccumulators. Science of the Total Environment, 2019, 659, 612-620.	8.0	25
57	Strong Metal–Support Interactions between Copper and Iron Oxide during the Highâ€Temperature Waterâ€Gas Shift Reaction. Angewandte Chemie - International Edition, 2019, 58, 9083-9087.	13.8	82
58	Strong Metal–Support Interactions between Copper and Iron Oxide during the Highâ€Temperature Waterâ€Gas Shift Reaction. Angewandte Chemie, 2019, 131, 9181-9185.	2.0	22
59	Elucidation of the Reaction Mechanism for High-Temperature Water Gas Shift over an Industrial-Type Copper–Chromium–Iron Oxide Catalyst. Journal of the American Chemical Society, 2019, 141, 7990-7999.	13.7	60
60	Cobalt phthalocyanine coordinated to pyridine-functionalized carbon nanotubes with enhanced CO2 electroreduction. Applied Catalysis B: Environmental, 2019, 251, 112-118.	20.2	135
61	Electronic Tuning of Cobalt Porphyrins Immobilized on Nitrogen-Doped Graphene for CO ₂ Reduction. ACS Applied Energy Materials, 2019, 2, 2435-2440.	5.1	34
62	Direct Electrochemical Carboxylation of Benzylic C–N Bonds with Carbon Dioxide. ACS Catalysis, 2019, 9, 4699-4705.	11.2	98
63	Facile synthesis of polymerized cobalt phthalocyanines for highly efficient CO ₂ reduction. Green Chemistry, 2019, 21, 6056-6061.	9.0	33
64	Molecular structure and sour gas surface chemistry of supported K2O/WO3/Al2O3 catalysts. Applied Catalysis B: Environmental, 2018, 232, 146-154.	20.2	19
65	Revealing structure-activity relationships in chromium free high temperature shift catalysts promoted by earth abundant elements. Applied Catalysis B: Environmental, 2018, 232, 205-212.	20.2	27
66	A perspective on chromium-Free iron oxide-based catalysts for high temperature water-gas shift reaction. Catalysis Today, 2018, 311, 2-7.	4.4	22
67	Formation of N2O greenhouse gas during SCR of NO with NH3 by supported vanadium oxide catalysts. Applied Catalysis B: Environmental, 2018, 224, 836-840.	20.2	72
68	Elucidating the Reactivity and Mechanism of CO ₂ Electroreduction at Highly Dispersed Cobalt Phthalocyanine. ACS Energy Letters, 2018, 3, 1381-1386.	17.4	175
69	A decade+ of operando spectroscopy studies. Catalysis Today, 2017, 283, 27-53.	4.4	126
70	Nature of Active Sites and Surface Intermediates during SCR of NO with NH ₃ by Supported V ₂ O ₅ –WO ₃ /TiO ₂ Catalysts. Journal of the American Chemical Society, 2017, 139, 15624-15627.	13.7	266
71	Reaction Pathways and Kinetics for Selective Catalytic Reduction (SCR) of Acidic NO _{<i>x</i>} Emissions from Power Plants with NH ₃ . ACS Catalysis, 2017, 7, 8358-8361.	11.2	78
72	Resolving the Reaction Mechanism for H ₂ Formation from High-Temperature Water–Gas Shift by Chromium–Iron Oxide Catalysts. ACS Catalysis, 2016, 6, 2827-2830.	11.2	48

Мімсниї Zhu

#	Article	IF	CITATIONS
73	Influence of catalyst synthesis method on selective catalytic reduction (SCR) of NO by NH3 with V2O5-WO3/TiO2 catalysts. Applied Catalysis B: Environmental, 2016, 193, 141-150.	20.2	136
74	Promotion Mechanisms of Iron Oxide-Based High Temperature Water–Gas Shift Catalysts by Chromium and Copper. ACS Catalysis, 2016, 6, 4455-4464.	11.2	98
75	Dynamics of CrO ₃ –Fe ₂ O ₃ Catalysts during the High-Temperature Water-Gas Shift Reaction: Molecular Structures and Reactivity. ACS Catalysis, 2016, 6, 4786-4798.	11.2	68
76	Iron-Based Catalysts for the High-Temperature Water–Gas Shift (HT-WGS) Reaction: A Review. ACS Catalysis, 2016, 6, 722-732.	11.2	267
77	Selective catalytic reduction of NO by NH3 with WO3-TiO2 catalysts: Influence of catalyst synthesis method. Applied Catalysis B: Environmental, 2016, 188, 123-133.	20.2	51
78	Determining Number of Active Sites and TOF for the High-Temperature Water Gas Shift Reaction by Iron Oxide-Based Catalysts. ACS Catalysis, 2016, 6, 1764-1767.	11.2	36
79	Synthesis, size reduction, and delithiation of carbonate-free nanocrystalline lithium nickel oxide. Journal of Materials Science, 2013, 48, 1740-1745.	3.7	8
80	Electroreduction of Carbon Dioxide by Heterogenized Cofacial Porphyrins. Transactions of Tianjin University, 0, , 1.	6.4	3
81	Operando Metalloid Znδ+ Active Sites for Highly Efficient Carbon Dioxide Reduction Electrocatalysis. Angewandte Chemie, 0, , .	2.0	0