
Kristjan Plaetzer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7944080/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Photodynamic Inactivation of plant pathogens part II: fungi. Photochemical and Photobiological Sciences, 2022, 21, 195-207.	2.9	9
2	Breaking the Rebellion: Photodynamic Inactivation against Erwinia amylovora Resistant to Streptomycin. Antibiotics, 2022, 11, 544.	3.7	6
3	Determination of the Efficiency of Photodynamic Decontamination of Food. Methods in Molecular Biology, 2022, 2451, 691-699.	0.9	0
4	Photofungizides Based on Curcumin and Derivates Thereof against Candida albicans and Aspergillus niger. Antibiotics, 2021, 10, 1315.	3.7	6
5	In the Right Light: Photodynamic Inactivation of Microorganisms Using a LED-Based Illumination Device Tailored for the Antimicrobial Application. Antibiotics, 2020, 9, 13.	3.7	13
6	Save the crop: Photodynamic Inactivation of plant pathogens I: bacteria. Photochemical and Photobiological Sciences, 2019, 18, 1700-1708.	2.9	30
7	CureCuma–cationic curcuminoids with improved properties and enhanced antimicrobial photodynamic activity. European Journal of Medicinal Chemistry, 2018, 159, 423-440.	5.5	24
8	New horizons in microbiological food safety: Photodynamic Decontamination based on a curcumin derivative. Photochemical and Photobiological Sciences, 2017, 16, 1784-1791.	2.9	63
9	Photoantimicrobials—are we afraid of the light?. Lancet Infectious Diseases, The, 2017, 17, e49-e55.	9.1	498
10	Methylsulfonyl Zn phthalocyanine: A polyvalent and powerful hydrophobic photosensitizer with a wide spectrum of photodynamic applications. Photodiagnosis and Photodynamic Therapy, 2016, 13, 40-47.	2.6	27
11	A comparative study on the antibacterial photodynamic efficiency of a curcumin derivative and a formulation on a porcine skin model. Photochemical and Photobiological Sciences, 2016, 15, 187-195.	2.9	34
12	Photodynamic treatment with hexyl-aminolevulinate mediates reversible thiol oxidation in core oxidative stress signaling proteins. Molecular BioSystems, 2016, 12, 796-805.	2.9	8
13	MicroRNAs Associated with the Efficacy of Photodynamic Therapy in Biliary Tract Cancer Cell Lines. International Journal of Molecular Sciences, 2014, 15, 20134-20157.	4.1	18
14	Real-time analysis of endogenous protoporphyrin IX fluorescence from δ-aminolevulinic acid and its derivatives reveals distinct time- and dose-dependent characteristics <i>in vitro</i> . Journal of Biomedical Optics, 2014, 19, 085007.	2.6	10
15	Red versus blue light illumination in hexyl 5-aminolevulinate photodynamic therapy: the influence of light color and irradiance on the treatment outcome <i>in vitro</i> . Journal of Biomedical Optics, 2014, 19, 088002.	2.6	28
16	Photodynamic decontamination of foodstuff from Staphylococcus aureus based on novel formulations of curcumin. Photochemical and Photobiological Sciences, 2014, 13, 1402-1409.	2.9	72
17	Comprehensive analysis of alterations in the miRNome in response to photodynamic treatment. Journal of Photochemistry and Photobiology B: Biology, 2013, 120, 74-81.	3.8	25
18	Apoptosis in cancer cells induced by photodynamic treatment – a methodological approach. Journal of Porphyrins and Phthalocyanines, 2013, 17, 197-209.	0.8	12

KRISTJAN PLAETZER

#	Article	lF	CITATIONS
19	Back to the roots: photodynamic inactivation of bacteria based on water-soluble curcumin bound to polyvinylpyrrolidone as a photosensitizer. Photochemical and Photobiological Sciences, 2013, 12, 1795-1802.	2.9	55
20	Photosensitizer Adhered to Cell Culture Microplates Induces Phototoxicity in Carcinoma Cells. BioMed Research International, 2013, 2013, 1-11.	1.9	5
21	A Comprehensive Tutorial onIn VitroCharacterization of New Photosensitizers for Photodynamic Antitumor Therapy and Photodynamic Inactivation of Microorganisms. BioMed Research International, 2013, 2013, 1-17.	1.9	47
22	Lipophilic rather than hydrophilic photosensitizers show strong adherence to standard cell culture microplates under cell-free conditions. Journal of Photochemistry and Photobiology B: Biology, 2011, 103, 222-229.	3.8	6
23	Advances in photodynamic therapy for the treatment of hilar biliary tract cancer. Future Oncology, 2010, 6, 1925-1936.	2.4	12
24	Comparative in vitro study on the characteristics of different photosensitizers employed in PDT. Journal of Photochemistry and Photobiology B: Biology, 2010, 100, 173-180.	3.8	120
25	Antibacterial photodynamic therapy using water-soluble formulations of hypericin or mTHPC is effective in inactivation of Staphylococcus aureus. Photochemical and Photobiological Sciences, 2010, 9, 365-369.	2.9	73
26	Uptake and phototoxicity of meso-tetrahydroxyphenyl chlorine are highly variable in human biliary tract cancer cell lines and correlate with markers of differentiation and proliferation. Photochemical and Photobiological Sciences, 2010, 9, 734-743.	2.9	31
27	Comparative characterization of the efficiency and cellular pharmacokinetics of Foscan®- and Foslip®-based photodynamic treatment in human biliary tract cancer cell lines. Photochemical and Photobiological Sciences, 2007, 6, 619-627.	2.9	85
28	Glucose is Required to Maintain High ATP-levels for the Energy-utilizing Steps During PDT-induced Apoptosis¶. Photochemistry and Photobiology, 2007, 76, 695-703.	2.5	2
29	Characterization of a simple and homogeneous irradiation device based on light-emitting diodes: A possible low-cost supplement to conventional light sources for photodynamic treatment. Medical Laser Application: International Journal for Laser Treatment and Research, 2006, 21, 277-283.	0.3	40
30	Cellular Mechanisms and Prospective Applications of Hypericin in Photodynamic Therapy. Current Medicinal Chemistry, 2006, 13, 2189-2204.	2.4	106
31	Characterization of Apoptosis Induced by Photodynamic Treatment with Hypericin in A431 Human Epidermoid Carcinoma Cells. Journal of Environmental Pathology, Toxicology and Oncology, 2006, 25, 173-188.	1.2	45
32	The microbial experience of environmental phosphate fluctuations. An essay on the possibility of putting intentions into cell biochemistry. Journal of Theoretical Biology, 2005, 235, 540-554.	1.7	14
33	Apoptosis Following Photodynamic Tumor Therapy: Induction, Mechanisms and Detection. Current Pharmaceutical Design, 2005, 11, 1151-1165.	1.9	112
34	Differential effects of glucose deprivation on the cellular sensitivity towards photodynamic treatment-based production of reactive oxygen species and apoptosis-induction. FEBS Letters, 2005, 579, 185-190.	2.8	44
35	Photodynamic Treatment with Fractionated Light Decreases Production of Reactive Oxygen Species and Cytotoxicity In <i>Vitro via</i> Regeneration of Glutathione [¶] . Photochemistry and Photobiology, 2005, 81, 609-613.	2.5	3
36	Photodynamic Treatment with Fractionated Light Decreases Production of Reactive Oxygen Species and Cytotoxicity In Vitro via Regeneration of Glutathione¶. Photochemistry and Photobiology, 2005, 81, 609.	2.5	27

#	Article	IF	CITATIONS
37	The Modes of Cell Death Induced by PDT: An Overview. Medical Laser Application: International Journal for Laser Treatment and Research, 2003, 18, 7-19.	0.3	88
38	Characterization of the cell death modes and the associated changes in cellular energy supply in response to AlPcS4-PDT. Photochemical and Photobiological Sciences, 2002, 1, 172-177.	2.9	79
39	Glucose is Required to Maintain High ATP-levels for the Energy-utilizing Steps During PDT-induced Apoptosis¶. Photochemistry and Photobiology, 2002, 76, 695.	2.5	27