
Li Fang Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7943967/publications.pdf Version: 2024-02-01

LI FANG MANG

#	Article	IF	CITATIONS
1	Folic acid–Pluronic F127 magnetic nanoparticle clusters for combined targeting, diagnosis, and therapy applications. Biomaterials, 2009, 30, 5114-5124.	5.7	241
2	Mutagenicity and polycyclic aromatic hydrocarbon content of fumes from heated cooking oils produced in Taiwan. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 1997, 381, 157-161.	0.4	105
3	Study of Mn Dissolution from LiMn[sub 2]O[sub 4] Spinel Electrodes Using Rotating Ring-Disk Collection Experiments. Journal of the Electrochemical Society, 2003, 150, A905.	1.3	98
4	Mutagenicity and aromatic amine content of fumes from heated cooking oils produced in Taiwan. Food and Chemical Toxicology, 1999, 37, 125-134.	1.8	95
5	Synthesis and characterization of chondroitin sulfate–methacrylate hydrogels. Carbohydrate Polymers, 2003, 52, 389-396.	5.1	95
6	Folate-mediated chondroitin sulfate-Pluronic® 127 nanogels as a drug carrier. European Journal of Pharmaceutical Sciences, 2009, 38, 64-73.	1.9	70
7	Chemically Conjugating Polyethylenimine with Chondroitin Sulfate to Promote CD44-Mediated Endocytosis for Gene Delivery. Molecular Pharmaceutics, 2013, 10, 664-676.	2.3	62
8	A specific tumor-targeting magnetofluorescent nanoprobe for dual-modality molecular imaging. Biomaterials, 2010, 31, 1707-1715.	5.7	60
9	Chondroitin sulfate-polyethylenimine copolymer-coated superparamagnetic iron oxide nanoparticles as an efficient magneto-gene carrier for microRNA-encoding plasmid DNA delivery. Nanoscale, 2015, 7, 8554-8565.	2.8	58
10	Characterization of polyelectrolyte complexes between chondroitin sulfate and chitosan in the solid state. Journal of Biomedical Materials Research - Part A, 2005, 75A, 128-137.	2.1	47
11	Succinated chitosan as a gene carrier for improved chitosan solubility and gene transfection. Nanomedicine: Nanotechnology, Biology, and Medicine, 2011, 7, 174-183.	1.7	45
12	Antitumor Efficacy of Doxorubicin Released from Crosslinked Nanoparticulate Chondroitin Sulfate/Chitosan Polyelectrolyte Complexes. Macromolecular Bioscience, 2011, 11, 680-688.	2.1	42
13	Nitro-polycyclic aromatic hydrocarbon contents of fumes from heated cooking oils and prevention of mutagenicity by catechin. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 1998, 403, 29-34.	0.4	41
14	Poly(ethylene imine)â€ <i>g</i> â€chitosan using EXâ€810 as a spacer for nonviral gene delivery vectors. Journal of Biomedical Materials Research - Part A, 2009, 88A, 1058-1068.	2.1	40
15	Preparation of Chondroitin Sulfate- <i>g</i> -poly(ε-caprolactone) Copolymers as a CD44-Targeted Vehicle for Enhanced Intracellular Uptake. Molecular Pharmaceutics, 2014, 11, 1164-1175.	2.3	40
16	Tuning the Distance of Rattle-Shaped IONP@Shell-in-Shell Nanoparticles for Magnetically-Targeted Photothermal Therapy in the Second Near-Infrared Window. ACS Applied Materials & Interfaces, 2018, 10, 1508-1519.	4.0	40
17	Hybrid Polyethylenimine and Polyacrylic Acid-Bound Iron Oxide as a Magnetoplex for Gene Delivery. Langmuir, 2012, 28, 3542-3552.	1.6	38
18	Improvement in Aluminum Complexes Bearing Schiff Bases in Ring-Opening Polymerization of Îμ-Caprolactone: A Five-Membered-Ring System. Organometallics, 2017, 36, 1936-1945.	1.1	36

LI FANG WANG

#	Article	IF	CITATIONS
19	Characterization of chondroitin sulfate and its interpenetrating polymer network hydrogels for sustained-drug release. International Journal of Pharmaceutics, 2007, 329, 103-109.	2.6	35
20	Synthesis and properties of copolymers from 2-hydroxyethyl methacrylate-linked nonsteroidal antiinflammatory agents with methacrylic acid. Journal of Polymer Science Part A, 1998, 36, 1481-1490.	2.5	34
21	Biodegradable Amphiphilic Copolymers Based on Poly(ϵ-caprolactone)-Graft Chondroitin Sulfate as Drug Carriers. Biomacromolecules, 2008, 9, 2447-2457.	2.6	34
22	One-pot synthesis of PDMAEMA-bound iron oxide nanoparticles for magnetofection. Journal of Materials Chemistry B, 2013, 1, 5916.	2.9	29
23	Near-Infrared Light-Triggered Drug Release from Ultraviolet- and Redox-Responsive Polymersome Encapsulated with Core–Shell Upconversion Nanoparticles for Cancer Therapy. ACS Applied Bio Materials, 2021, 4, 3264-3275.	2.3	29
24	Rotating ring–disk electrode measurements on Mn dissolution and capacity losses of spinel electrodes in various organic electrolytes. Journal of Power Sources, 2006, 157, 515-521.	4.0	28
25	CS-PEI/Beclin-siRNA Downregulate Multidrug Resistance Proteins and Increase Paclitaxel Therapeutic Efficacy against NSCLC. Molecular Therapy - Nucleic Acids, 2019, 17, 477-490.	2.3	25
26	Chondroitin sulfate-based anti-inflammatory macromolecular prodrugs. European Journal of Pharmaceutical Sciences, 2006, 29, 60-69.	1.9	24
27	Design of Magnetic Nanoparticles-Assisted Drug Delivery System. Current Pharmaceutical Design, 2011, 17, 2331-2351.	0.9	23
28	Self-assembled poly(ε-caprolactone)-g-chondroitin sulfate copolymers as an intracellular doxorubicin delivery carrier against lung cancer cells. International Journal of Nanomedicine, 2012, 7, 4169.	3.3	22
29	Synthesis and characterization of S-PCL-PDMAEMA for co-delivery of pDNA and DOX. RSC Advances, 2014, 4, 11089-11098.	1.7	21
30	Knockout of ho-1 protects the striatum from ferrous iron-induced injury in a male-specific manner in mice. Scientific Reports, 2016, 6, 26358.	1.6	21
31	Angiopep-pluronic F127-conjugated superparamagnetic iron oxide nanoparticles as nanotheranostic agents for BBB targeting. Journal of Materials Chemistry B, 2014, 2, 5666.	2.9	20
32	Enhanced Catalytic Activity of Aluminum Complexes for the Ring-Opening Polymerization of ε-Caprolactone. Inorganic Chemistry, 2017, 56, 7998-8006.	1.9	19
33	Sample stacking by fieldâ€amplified sample injection and sweeping for simultaneous analysis of acidic and basic components in clinic application. Electrophoresis, 2012, 33, 1571-1581.	1.3	18
34	Glial cell line-derived neurotrophic factor gene delivery via a polyethylene imine grafted chitosan carrier. International Journal of Nanomedicine, 2014, 9, 3163.	3.3	18
35	Folic Acid Linked Chondroitin Sulfate-Polyethyleneimine Copolymer Based Gene Delivery System. Journal of Biomedical Nanotechnology, 2015, 11, 1385-1400.	0.5	18
36	Effects of the preparation methods of hydroxypropyl methylcellulose/polyacrylic acid blended films on drug release. Journal of Biomaterials Science, Polymer Edition, 2003, 14, 27-44.	1.9	17

LI FANG WANG

#	Article	IF	CITATIONS
37	Male-Specific Alleviation of Iron-Induced Striatal Injury by Inhibition of Autophagy. PLoS ONE, 2015, 10, e0131224.	1.1	17
38	Dual Stimuli-Responsive Block Copolymers with Adjacent Redox- and Photo-Cleavable Linkages for Smart Drug Delivery. Biomacromolecules, 2020, 21, 3342-3352.	2.6	17
39	Oral sustained delivery of diclofenac sodium using calcium chondroitin sulfate matrix. Journal of Biomaterials Science, Polymer Edition, 2005, 16, 1319-1331.	1.9	16
40	Insolubilization of sodium chondroitin sulfate by forming a semi-interpenetrating polymer network with acrylic acid: A potential carrier for colon-specific drug delivery. Journal of Applied Polymer Science, 2002, 85, 114-122.	1.3	15
41	Distinct CPT-induced deaths in lung cancer cells caused by clathrin-mediated internalization of CP micelles. Nanoscale, 2016, 8, 3510-3522.	2.8	15
42	Investigation of the dinuclear effect of aluminum complexes in the ring-opening polymerization of ε-caprolactone. RSC Advances, 2017, 7, 18851-18860.	1.7	15
43	Retinol-encapsulated water-soluble succinated chitosan nanoparticles for antioxidant applications. Journal of Biomaterials Science, Polymer Edition, 2013, 24, 315-329.	1.9	14
44	Azide–alkyne cycloaddition for universal post-synthetic modifications of nucleic acids and effective synthesis of bioactive nucleic acid conjugates. Organic and Biomolecular Chemistry, 2014, 12, 6624-6633.	1.5	14
45	The Copolymer of Poly(2â€dimethylaminoethyl methacrylate) and Methacrylated Chondroitin Sulfate with Low Cytotoxicity for Gene Delivery. Advanced Healthcare Materials, 2013, 2, 1458-1468.	3.9	13
46	Pentablock copolymers of pluronic F127 and modified poly(2-dimethyl amino)ethyl methacrylate for internalization mechanism and gene transfection studies. International Journal of Nanomedicine, 2013, 8, 2011.	3.3	13
47	Arginine-tocopherol bioconjugated lipid vesicles for selective pTRAIL delivery and subsequent apoptosis induction in glioblastoma cells. Materials Science and Engineering C, 2021, 126, 112189.	3.8	13
48	Kinetics and hydrolysis mechanism of polymeric prodrugs containing ibuprofen, ketoprofen, and naproxen as pendent agents. Journal of Biomaterials Science, Polymer Edition, 2002, 13, 287-299.	1.9	12
49	Gemini Lipopeptide Bearing an Ultrashort Peptide for Enhanced Transfection Efficiency and Cancer-Cell-Specific Cytotoxicity. ACS Omega, 2021, 6, 22955-22968.	1.6	12
50	Title is missing!. Journal of Materials Science, 2002, 37, 4109-4115.	1.7	11
51	Synthesis and characterization of pluronic-block-poly(N,N-dimethylamino-2-ethyl methacrylate) pentablock copolymers for drug/gene co-delivery systems. RSC Advances, 2014, 4, 31552.	1.7	11
52	Imaging and Chemotherapeutic Comparisons of Iron Oxide Nanoparticles Chemically and Physically Coated with Poly(ethylene) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 142 Td (glycol)- <i>b</i> -Poly(< Journal of Biomedical Nanotechnology, 2015, 11, 951-963.	;l>ε&]t;/l	>-caprolact
53	Aulti-Stimuli-Responsive DOX Released from Magnetosome for Tumor Synergistic Theranostics. International Journal of Nanomedicine, 2020, Volume 15, 8623-8639.	3.3	11
54	Synthesis and characterization of segmented polyurethanes containing aromatic diol chain	1.3	10

Synthesis and characterization of segmented polyurethanes containing aromatic diol chain extenders. Journal of Applied Polymer Science, 1997, 64, 539-546. 54

LI FANG WANG

#	Article	IF	CITATIONS
55	Rotating ring-disc electrode measurements of manganese dissolution and capacity loss of Li1+xMn2â^xO4 and Li1+xAlyMn2â^xâ^'yO4 spinel electrodes for lithium-ion batteries. Journal of Power Sources, 2005, 150, 1-10.	4.0	10
56	Characterization of hydrogels prepared from copolymerization of the different degrees of methacrylateâ€grafted chondroitin sulfate macromers and acrylic acid. Journal of Biomedical Materials Research - Part A, 2008, 84A, 727-739.	2.1	10
57	A new and novel amide bond cleavage of N-methoxymethylpyrrolo[2,1-c][1,4]benzodiazepine-5,11-diones by hydride reduction via 3-aza-Grob fragmentation. Tetrahedron, 1998, 54, 13149-13154.	1.0	9
58	Controlled immobilization of chondroitin sulfate in polyacrylic acid networks. Journal of Biomaterials Science, Polymer Edition, 2007, 18, 17-34.	1.9	9
59	Folate-mediated and doxorubicin-conjugated poly(ε-caprolactone)-g-chondroitin sulfate copolymers for enhanced intracellular drug delivery. RSC Advances, 2014, 4, 59548-59557.	1.7	9
60	Investigation of silica additive for high-rate sealed lead-acid cells. Electrochimica Acta, 2006, 51, 4135-4141.	2.6	8
61	Synthesis and properties of a naproxen polymeric prodrug. Journal of Pharmacy and Pharmacology, 2010, 54, 1129-1135.	1.2	8
62	The synthesis and comparison of poly(methacrylic acid)–poly(ε-caprolactone) block copolymers with and without symmetrical disulfide linkages in the center for enhanced cellular uptake. RSC Advances, 2016, 6, 75092-75103.	1.7	8
63	Investigation of the self-assembly of CS and PCL copolymers with different molecular weights in water solution by coarse-grained molecular dynamics simulation. Journal of Molecular Modeling, 2017, 23, 151.	0.8	8
64	pH Sensitive Polymeric Prodrugs Containing Ibuprofen, Ketoprofen and Naproxen as Pendent Groups. Journal of Bioactive and Compatible Polymers, 1999, 14, 415-428.	0.8	7
65	Diacid architecture effect on the synthesis and microstructure of rigid-rod poly(benzobisthiazole)s. Polymer International, 2006, 55, 1450-1455.	1.6	7
66	Anticancer Activity of Released Doxorubicin from a Folate-Mediated Polyelectrolyte Complex. Journal of Biomaterials Science, Polymer Edition, 2011, 22, 1487-1507.	1.9	7
67	Effective and site-specific phosphoramidation reaction for universally labeling nucleic acids. Analytical Biochemistry, 2014, 449, 118-128.	1.1	6
68	Microâ€scale RNA Interference using Iron Oxide Nanoparticleâ€modified Lentivirus. ChemNanoMat, 2018, 4, 98-102.	1.5	5
69	Chondroitin Sulfate- g -Poly(Ϊμ -Caprolactone) Co-Polymer Aggregates as Potential Targeting Drug Carriers. Journal of Biomaterials Science, Polymer Edition, 2012, 23, 1821-1842.	1.9	4
70	Length effect of methoxy poly(ethylene oxide)- b -[poly(ε-caprolactone)- g -poly(methacrylic acid)] copolymers on cisplatin delivery. Colloids and Surfaces B: Biointerfaces, 2017, 156, 243-253.	2.5	4
71	The synthesis and comparison of chondroitin sulfate-modified PDMAEMA with chondroitin sulfate-modified PEI as a potential gene delivery vector. RSC Advances, 2016, 6, 38209-38222.	1.7	3
72	Traumatic ossicular chain discontinuityreport of two cases. Kaohsiung Journal of Medical Sciences, 1999, 15, 504-9.	0.8	3

#	Article	IF	CITATIONS
73	Synthesis and Characterization of Methacrylic Derivatives as Drug Carriers. Drug Development and Industrial Pharmacy, 1997, 23, 671-678.	0.9	1