Liwen Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7943883/publications.pdf

Version: 2024-02-01

687363 677142 1,120 23 13 22 h-index citations g-index papers 23 23 23 1671 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Engineering the biosynthesis of fungal nonribosomal peptides. Natural Product Reports, 2023, 40, 62-88.	10.3	17
2	Comparative Analysis of the Endophytic Bacterial Diversity of <i>Populus euphratica</i> Oliv. in Environments of Different Salinity Intensities. Microbiology Spectrum, 2022, 10, e0050022.	3.0	12
3	Herbicidal efficacy of harzianums produced by the biofertilizer fungus, Trichoderma brevicompactum. AMB Express, 2020, 10, 118.	3.0	9
4	Combinatorial Biosynthesis of Sulfated Benzenediol Lactones with a Phenolic Sulfotransferase from Fusarium graminearum PH-1. MSphere, 2020, 5, .	2.9	11
5	Intrinsic and Extrinsic Programming of Product Chain Length and Release Mode in Fungal Collaborating Iterative Polyketide Synthases. Journal of the American Chemical Society, 2020, 142, 17093-17104.	13.7	14
6	Secondary metabolites from hypocrealean entomopathogenic fungi: novel bioactive compounds. Natural Product Reports, 2020, 37, 1181-1206.	10.3	58
7	Secondary metabolites from hypocrealean entomopathogenic fungi: genomics as a tool to elucidate the encoded parvome. Natural Product Reports, 2020, 37, 1164-1180.	10.3	27
8	Methylglucosylation of Phenolic Compounds by Fungal Glycosyltransferase-Methyltransferase Functional Modules. Journal of Agricultural and Food Chemistry, 2019, 67, 8573-8580.	5.2	10
9	Rational Reprogramming of <i> O < /i> - Methylation Regioselectivity for Combinatorial Biosynthetic Tailoring of Benzenediol Lactone Scaffolds. Journal of the American Chemical Society, 2019, 141, 4355-4364.</i>	13.7	28
10	Extracellularly oxidative activation and inactivation of matured prodrug for cryptic self-resistance in naphthyridinomycin biosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 11232-11237.	7.1	29
11	Methylglucosylation of aromatic amino and phenolic moieties of drug-like biosynthons by combinatorial biosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E4980-E4989.	7.1	40
12	Uptake and Distribution of 14C-Labeled Multi-walled Carbon Nanotubes by Wheat (Triticum aestivum) Tj ETQq0	0 0 rgBT /	Overlock 10 T
13	DrwH, a novel WHy domain-containing hydrophobic LEA5C protein from Deinococcus radiodurans, protects enzymatic activity under oxidative stress. Scientific Reports, 2017, 7, 9281.	3.3	20
14	The Stress-Responsive and Host-Oriented Role of Nonribosomal Peptide Synthetases in an Entomopathogenic Fungus, Beauveria bassiana. Journal of Microbiology and Biotechnology, 2017, 27, 439-449.	2.1	9
15	Insights into Adaptations to a Near-Obligate Nematode Endoparasitic Lifestyle from the Finished Genome of Drechmeria coniospora. Scientific Reports, 2016, 6, 23122.	3.3	32
16	The novel regulatory ncRNA, NfiS, optimizes nitrogen fixation via base pairing with the nitrogenase gene <i>nifK</i> mRNA in <i>Pseudomonas stutzeri</i> A1501. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E4348-56.	7.1	50
17	Degradation of multiwall carbon nanotubes by bacteria. Environmental Pollution, 2013, 181, 335-339.	7.5	108
18	Effect of primary particle size on colloidal stability of multiwall carbon nanotubes. Water Science and Technology, 2013, 68, 2249-2256.	2.5	2

#	Article	IF	CITATIONS
19	Interactions of 14C-labeled multi-walled carbon nanotubes with soil minerals in water. Environmental Pollution, 2012, 166, 75-81.	7.5	65
20	Phase Distribution of ¹⁴ C-Labeled Multiwalled Carbon Nanotubes in Aqueous Systems Containing Model Solids: Peat. Environmental Science & En	10.0	62
21	Potential Release Pathways, Environmental Fate, And Ecological Risks of Carbon Nanotubes. Environmental Science & Environmental Science & Environmenta	10.0	446
22	Effects of Polyethyleneimine-Mediated Functionalization of Multi-Walled Carbon Nanotubes on Earthworm Bioaccumulation and Sorption by Soils. Environmental Science & Earthworm, Technology, 2011, 45, 3718-3724.	10.0	68
23	Environmental Fate, Transport, and Transformation of Carbon Nanoparticles. ACS Symposium Series, 2011, , 69-101.	0.5	3