
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7943008/publications.pdf Version: 2024-02-01

WELLANC

#	Article	IF	CITATIONS
1	Single-cell RNA-seq dissects the intratumoral heterogeneity of triple-negative breast cancer based on gene regulatory networks. Molecular Therapy - Nucleic Acids, 2021, 23, 682-690.	2.3	45
2	In silico drug repositioning based on drug-miRNA associations. Briefings in Bioinformatics, 2020, 21, 498-510.	3.2	22
3	Dissecting the m6A methylation affection on afatinib resistance in non-small cell lung cancer. Pharmacogenomics Journal, 2020, 20, 227-234.	0.9	27
4	Circulating Circular RNAs as Biomarkers for the Diagnosis and Prediction of Outcomes in Acute Ischemic Stroke. Stroke, 2020, 51, 319-323.	1.0	98
5	Integrative Analysis of Regulatory Module Reveals Associations of Microgravity with Dysfunctions of Multi-body Systems and Tumorigenesis. International Journal of Molecular Sciences, 2020, 21, 7585.	1.8	5
6	ncRI: a manually curated database for experimentally validated non-coding RNAs in inflammation. BMC Genomics, 2020, 21, 380.	1.2	8
7	Pan-cancer analysis reveals cooperativity of both strands of microRNA that regulate tumorigenesis and patient survival. Nature Communications, 2020, 11, 968.	5.8	57
8	ncEP: A Manually Curated Database for Experimentally Validated ncRNA-encoded Proteins or Peptides. Journal of Molecular Biology, 2020, 432, 3364-3368.	2.0	34
9	Identification of drug resistance associated ncRNAs based on comprehensive heterogeneous network. Life Sciences, 2020, 243, 117256.	2.0	4
10	LncRNA-Encoded Peptide: Functions and Predicting Methods. Frontiers in Oncology, 2020, 10, 622294.	1.3	59
11	Extracellular Vesicle–Mediated Delivery of Circular RNA SCMH1 Promotes Functional Recovery in Rodent and Nonhuman Primate Ischemic Stroke Models. Circulation, 2020, 142, 556-574.	1.6	198
12	D-lnc: a comprehensive database and analytical platform to dissect the modification of drugs on IncRNA expression. RNA Biology, 2019, 16, 1586-1591.	1.5	25
13	MycoResistance: a curated resource of drug resistance molecules in Mycobacteria. Database: the Journal of Biological Databases and Curation, 2019, 2019, .	1.4	8
14	LncRNA HCP5 promotes triple negative breast cancer progression as a ceRNA to regulate BIRC3 by sponging miRâ€⊋19aâ€5p. Cancer Medicine, 2019, 8, 4389-4403.	1.3	70
15	Drug Resistance-Related Competing Interactions of IncRNA and mRNA across 19 Cancer Types. Molecular Therapy - Nucleic Acids, 2019, 16, 442-451.	2.3	25
16	Identification of transcription factor-miRNA-IncRNA feed-forward loops in breast cancer subtypes. Computational Biology and Chemistry, 2019, 78, 1-7.	1.1	21
17	Pathway enrichment analysis approach based on topological structure and updated annotation of pathway. Briefings in Bioinformatics, 2019, 20, 168-177.	3.2	32
18	Detecting the long nonâ€ʿcoding RNA signature related to spinal cord ependymal tumor subtype using a genomeâ€ʿwide methylome analysis approach. Molecular Medicine Reports, 2019, 20, 1531-1540.	1.1	2

#	Article	IF	CITATIONS
19	Systematical analysis of IncRNA–mRNA competing endogenous RNA network in breast cancer subtypes. Breast Cancer Research and Treatment, 2018, 169, 267-275.	1.1	47
20	Accurate prediction and elucidation of drug resistance based on the robust and reproducible chemoresponse communities. International Journal of Cancer, 2018, 142, 1427-1439.	2.3	3
21	Inferring Novel Autophagy Regulators Based on Transcription Factors and Non-Coding RNAs Coordinated Regulatory Network. Cells, 2018, 7, 194.	1.8	8
22	Prediction of Non-coding RNAs as Drug Targets. Advances in Experimental Medicine and Biology, 2018, 1094, 109-115.	0.8	5
23	Matrix Metallopeptidase-2 Gene rs2287074 Polymorphism is Associated with Brick Tea Skeletal Fluorosis in Tibetans and Kazaks, China. Scientific Reports, 2017, 7, 40086.	1.6	19
24	Molecular classification of prostate adenocarcinoma by the integrated somatic mutation profiles and molecular network. Scientific Reports, 2017, 7, 738.	1.6	12
25	ncDR: a comprehensive resource of non-coding RNAs involved in drug resistance. Bioinformatics, 2017, 33, 4010-4011.	1.8	48
26	Decoding critical long non-coding RNA in ovarian cancer epithelial-to-mesenchymal transition. Nature Communications, 2017, 8, 1604.	5.8	159
27	High expression of PU.1 is associated with Her‑2 and shorter survival in patients with breast cancer. Oncology Letters, 2017, 14, 8220-8226.	0.8	12
28	Quantitative proteomics reveals the novel co-expression signatures in early brain development for prognosis of glioblastoma multiforme. Oncotarget, 2016, 7, 14161-14171.	0.8	27
29	Dissecting the Origin of Breast Cancer Subtype Stem Cell and the Potential Mechanism of Malignant Transformation. PLoS ONE, 2016, 11, e0165001.	1.1	11
30	Association between vitamin D receptor gene FokI polymorphism and skeletal fluorosis of the brick-tea type fluorosis: a cross sectional, case control study. BMJ Open, 2016, 6, e011980.	0.8	15
31	Large-scale identification of adverse drug reaction-related proteins through a random walk model. Scientific Reports, 2016, 6, 36325.	1.6	19
32	Psmir: a database of potential associations between small molecules and miRNAs. Scientific Reports, 2016, 6, 19264.	1.6	21
33	Systematic dissection of dysregulated transcription factor–miRNA feed-forward loops across tumor types. Briefings in Bioinformatics, 2016, 17, 996-1008.	3.2	54
34	The gain and loss of long noncoding RNA associated-competing endogenous RNAs in prostate cancer. Oncotarget, 2016, 7, 57228-57238.	0.8	43
35	Identification of associations between small molecule drugs and miRNAs based on functional similarity. Oncotarget, 2016, 7, 38658-38669.	0.8	34
36	Systematic Analysis of the Associations between Adverse Drug Reactions and Pathways. BioMed Research International, 2015, 2015, 1-12.	0.9	7

#	Article	IF	CITATIONS
37	Genome-wide characterization of essential, toxicity-modulating and no-phenotype genes in S. cerevisiae. Gene, 2015, 559, 1-8.	1.0	0
38	Identifying novel associations between small molecules and miRNAs based on integrated molecular networks. Bioinformatics, 2015, 31, 3638-3644.	1.8	72
39	Characterization of proteins in S. cerevisiae with subcellular localizations. Molecular BioSystems, 2015, 11, 1360-1369.	2.9	2
40	Spatiotemporal-specific IncRNAs in the brain, colon, liver and lung of macaque during development. Molecular BioSystems, 2015, 11, 3253-3263.	2.9	43
41	Integrated systems approach identifies risk regulatory pathways and key regulators in coronary artery disease. Journal of Molecular Medicine, 2015, 93, 1381-1390.	1.7	18
42	TMREC: A Database of Transcription Factor and MiRNA Regulatory Cascades in Human Diseases. PLoS ONE, 2015, 10, e0125222.	1.1	22
43	Characterization of TATA-containing genes and TATA-less genes in S. cerevisiae by network topologies and biological properties. Genomics, 2014, 104, 562-571.	1.3	7
44	Analysis and identification of essential genes in humans using topological properties and biological information. Gene, 2014, 551, 138-151.	1.0	22
45	Computational identification of human long intergenic non-coding RNAs using a GA–SVM algorithm. Gene, 2014, 533, 94-99.	1.0	34
46	Characterization of essential genes by topological properties in the perturbation sensitivity network. Biochemical and Biophysical Research Communications, 2014, 448, 473-479.	1.0	10
47	Analysis and identification of toxin targets by topological properties in protein–protein interaction network. Journal of Theoretical Biology, 2014, 349, 82-91.	0.8	16
48	Human proteins characterization with subcellular localizations. Journal of Theoretical Biology, 2014, 358, 61-73.	0.8	11
49	Gene Expression Profiling in Human Lung Development: An Abundant Resource for Lung Adenocarcinoma Prognosis. PLoS ONE, 2014, 9, e105639.	1.1	19
50	ldentification of active transcription factor and miRNA regulatory pathways in Alzheimer's disease. Bioinformatics, 2013, 29, 2596-2602.	1.8	66
51	SM2miR: a database of the experimentally validated small molecules' effects on microRNA expression. Bioinformatics, 2013, 29, 409-411.	1.8	175
52	Identification of links between small molecules and miRNAs in human cancers based on transcriptional responses. Scientific Reports, 2012, 2, 282.	1.6	72
53	Association Analysis of IL-17A and IL-17F Polymorphisms in Chinese Han Women with Breast Cancer. PLoS ONE, 2012, 7, e34400.	1.1	92
54	A miRNA Binding Site Single-Nucleotide Polymorphism in the 3′-UTR Region of the IL23R Gene Is Associated with Breast Cancer. PLoS ONE, 2012, 7, e49823.	1.1	42

#	Article	IF	CITATIONS
55	Topological properties of the drug targets regulated by microRNA in human protein–protein interaction network. Journal of Drug Targeting, 2011, 19, 354-364.	2.1	35
56	Predicting human microRNA precursors based on an optimized feature subset generated by GA–SVM. Genomics, 2011, 98, 73-78.	1.3	53
57	The analysis of the drug–targets based on the topological properties in the human protein–protein interaction network. Journal of Drug Targeting, 2009, 17, 524-532.	2.1	101
58	Constructing disease-specific gene networks using pair-wise relevance metric: Application to colon cancer identifies interleukin 8, desmin and enolase 1 as the central elements. BMC Systems Biology, 2008, 2, 72.	3.0	64
59	Familial aggregation analysis of gene expressions. BMC Proceedings, 2007, 1, S49.	1.8	1
60	Inhibition of LXRα signaling by vitamin D receptor: Possible role of VDR in bile acid synthesis. Biochemical and Biophysical Research Communications, 2006, 351, 176-184.	1.0	46
61	A novel model-free approach for reconstruction of time-delayed gene regulatory networks. Science in China Series C: Life Sciences, 2006, 49, 190-200.	1.3	2
62	Reconstruct gene regulatory subnetwork in yeast cell cycle using a novel approach. , 2005, , .		0
63	A robust hybrid between genetic algorithm and support vector machine for extracting an optimal feature gene subset. Genomics, 2005, 85, 16-23.	1.3	112