
Alan M Cook

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7942488/publications.pdf Version: 2024-02-01

ALAN M COOK

#	Article	IF	CITATIONS
1	Demonstration of a High Power, Wideband 220-GHz Traveling Wave Amplifier Fabricated by UV-LIGA. IEEE Transactions on Electron Devices, 2014, 61, 1672-1678.	3.0	168
2	Pressure dependence of plasma structure in microwave gas breakdown at 110 GHz. Applied Physics Letters, 2010, 97, .	3.3	127
3	Design Methodology and Experimental Verification of Serpentine/Folded-Waveguide TWTs. IEEE Transactions on Electron Devices, 2014, 61, 1679-1686.	3.0	105
4	High-Power Copper Gratings for a Sheet-Beam Traveling-Wave Amplifier at G-band. IEEE Transactions on Electron Devices, 2013, 60, 506-509.	3.0	37
5	Observation of plasma array dynamics in 110 GHz millimeter-wave air breakdown. Physics of Plasmas, 2011, 18, 100704.	1.9	29
6	Demonstration of a high power, wideband 220 GHz serpentine waveguide amplifier fabricated by UV-LIGA. , 2013, , .		24
7	Broadband 220-GHz Vacuum Window for a Traveling-Wave Tube Amplifier. IEEE Transactions on Electron Devices, 2013, 60, 1257-1259.	3.0	21
8	W-Band and D-Band Traveling-Wave Tube Circuits Fabricated by 3D Printing. IEEE Access, 2019, 7, 72561-72566.	4.2	21
9	Measurements of electron avalanche formation time in W-band microwave air breakdown. Physics of Plasmas, 2011, 18, 080707.	1.9	20
10	Millimeter wave scattering and diffraction in 110 GHz air breakdown plasma. Physics of Plasmas, 2013, 20, 043507.	1.9	20
11	Demonstration of a <i>W</i> -Band Traveling-Wave Tube Power Amplifier With 10-GHz Bandwidth. IEEE Transactions on Electron Devices, 2021, 68, 2492-2498.	3.0	17
12	High power breakdown testing of a photonic band-gap accelerator structure with elliptical rods. Physical Review Special Topics: Accelerators and Beams, 2013, 16, .	1.8	14
13	W-band TWT circuit fabricated by 3D-printed mold electroforming. , 2018, , .		12
14	Design and Large-Signal Modeling of a \$W\$ -Band Dielectric TWT. IEEE Transactions on Plasma Science, 2017, 45, 2820-2834.	1.3	10
15	Millimeter-wave and sub-millimeter-wave vacuum electronics amplifier development at the US Naval Research Laboratory. Proceedings of SPIE, 2013, , .	0.8	9
16	Development of a 233 GHz high-gain traveling wave amplifier. , 2014, , .		9
17	Design of a wideband high-power W-band serpentine TWT. , 2013, , .		7
18	Modeling of the NRL G-Band TWT amplifier using the CHRISTINE and TESLA simulation codes. , 2013, , .		7

#	Article	IF	CITATIONS
19	Design of a 233 GHz high-gain single-stage hybrid-serpentine TWT. , 2014, , .		7
20	Microfabrication and cold testing of copper circuits for a 50-watt 220-GHz traveling wave tube. Proceedings of SPIE, 2013, , .	0.8	6
21	Development of a wideband W-band serpentine waveguide TWT. , 2013, , .		5
22	Breakthrough UV-LIGA microfabrication of sub-mm and THz circuits. , 2013, , .		5
23	Coherent cherenkov radiation as a temporal diagnostic for microbunched beams. , 2007, , .		4
24	Microfabrication methods for W-band TWT circuits. , 2016, , .		4
25	Monolithically integrated 140 GHz TWT arrays. , 2018, , .		4
26	Serpentine waveguide 220 GHz millimeter wave amplifier cold test. , 2012, , .		3
27	Microfabricated 233 GHz traveling wave amplifier. , 2016, , .		3
28	Characterization of W-band Serpentine Waveguide TWT Circuits. , 2019, , .		3
29	W-band TWT Component Fabrication and Testing. , 2019, , .		3
30	Circuit Fabrication Methods for Millimeter-Wave Vacuum Electronics. , 2019, , .		3
31	1.5 MW, 110 GHz gyrotron breakdown in air. , 2012, , .		2
32	Dielectric and alternative-configuration-metal slow wave structures for W-Band traveling wave amplifiers. , 2014, , .		2
33	Dielectric, serpentine, and loaded-helix slow wave structures for W-band traveling wave tubes. , 2014, , ,		2
34	3D-printed mold electroforming for microfabrication of W-band TWT circuits. , 2017, , .		2
35	A High-Current-Density Electron Beam for Millimeter-Wave Amplifiers. IEEE Transactions on Electron Devices, 2021, 68, 3040-3044.	3.0	2
36	Demonstration of a W-band TWT with 10 GHz Bandwidth. , 2020, , .		2

3

#	Article	IF	CITATIONS
37	Design of broadband kilo-watt class W-band serpentine TWTs. , 2014, , .		1
38	Microfabricated, high power millimeter wave amplifiers at G-band. , 2014, , .		1
39	Microwave absorbing composites for vacuum electronics: New material compositions with unusual frequency responses and improved characterization of existing materials. , 2016, , .		1
40	Study of W-band diamond RF windows for high-average-power TWTs. , 2017, , .		1
41	Microfabrication methods for a 233 GHz traveling wave amplifier. , 2017, , .		1
42	Fabrication and testing of Ka-band multi-beam TWT circuits. , 2018, , .		1
43	Validation of the Stability Analysis Framework Based on the Large-signal Code TESLA-Z by Its Application to the Experimental TWTs. , 2021, , .		1
44	Embedded monofilament UV-LIGA techniques for microfabrication of beam tunnels in a 220 GHz wideband serpentine waveguide amplifier. , 2012, , .		0
45	Characterization of MgO-TiO <inf>2</inf> -based ceramic materials at W-band. , 2014, , .		0
46	High-power MMW sheet beam amplifiers. , 2015, , .		0
47	Microfabrication techniques for millimeter-wave vacuum electronics. , 2015, , .		0
48	Compact, efficient, high-power millimeter-wave power boosters. , 2017, , .		0
49	Validation of the Tesla-Z Stability Analysis Framework by its Application to Experimental TWTS*. , 2021, ,		0