
Jillian M Richmond

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7942154/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	CXCR3 Chemokine Receptor-Ligand Interactions in the Lymph Node Optimize CD4+ T Helper 1 Cell Differentiation. Immunity, 2012, 37, 1091-1103.	14.3	376
2	CXCL10 Is Critical for the Progression and Maintenance of Depigmentation in a Mouse Model of Vitiligo. Science Translational Medicine, 2014, 6, 223ra23.	12.4	333
3	Antibody blockade of IL-15 signaling has the potential to durably reverse vitiligo. Science Translational Medicine, 2018, 10, .	12.4	152
4	Innate immune mechanisms in vitiligo: danger from within. Current Opinion in Immunology, 2013, 25, 676-682.	5.5	149
5	Keratinocyte-Derived Chemokines Orchestrate T-Cell Positioning in the Epidermis during Vitiligo and May Serve as Biomarkers of Disease. Journal of Investigative Dermatology, 2017, 137, 350-358.	0.7	132
6	Immunology and Skin in Health and Disease. Cold Spring Harbor Perspectives in Medicine, 2014, 4, a015339-a015339.	6.2	114
7	Resident Memory and Recirculating Memory T Cells Cooperate to Maintain Disease in a Mouse Model of Vitiligo. Journal of Investigative Dermatology, 2019, 139, 769-778.	0.7	84
8	Suction blistering the lesional skin of vitiligo patients reveals useful biomarkers of disease activity. Journal of the American Academy of Dermatology, 2017, 76, 847-855.e5.	1.2	81
9	Simvastatin Prevents and Reverses Depigmentation in a Mouse Model of Vitiligo. Journal of Investigative Dermatology, 2015, 135, 1080-1088.	0.7	79
10	CXCR3 Depleting Antibodies Prevent and Reverse Vitiligo in Mice. Journal of Investigative Dermatology, 2017, 137, 982-985.	0.7	65
11	Resident Memory T Cells in Autoimmune Skin Diseases. Frontiers in Immunology, 2021, 12, 652191.	4.8	45
12	A double-blind, placebo-controlled, phase-II clinical trial to evaluate oral simvastatin as a treatment for vitiligo. Journal of the American Academy of Dermatology, 2017, 76, 150-151.e3.	1.2	33
13	Jak Inhibition Prevents Bleomycin-Induced Fibrosis in Mice and Is Effective in Patients with Morphea. Journal of Investigative Dermatology, 2020, 140, 1446-1449.e4.	0.7	31
14	Mouse Model for Human Vitiligo. Current Protocols in Immunology, 2019, 124, e63.	3.6	27
15	Current Insights in Cutaneous Lupus Erythematosus Immunopathogenesis. Frontiers in Immunology, 2020, 11, 1353.	4.8	27
16	Tâ€cell positioning by chemokines in autoimmune skin diseases. Immunological Reviews, 2019, 289, 186-204.	6.0	24
17	Jak Inhibitors Reverse Vitiligo in Mice but Do Not Deplete Skin Resident Memory T Cells. Journal of Investigative Dermatology, 2021, 141, 182-184.e1.	0.7	23
18	Potential therapeutic manipulations of the CXCR3 chemokine axis for the treatment of inflammatory fibrosing diseases. F1000Research. 2020. 9. 1197.	1.6	16

JILLIAN M RICHMOND

#	Article	IF	CITATIONS
19	Immunopathogenesis of alopecia areata. Current Research in Immunology, 2021, 2, 7-11.	2.8	14
20	Upcoming treatments for morphea. Immunity, Inflammation and Disease, 2021, 9, 1101-1145.	2.7	13
21	Case Series: Gene Expression Analysis in Canine Vogt-Koyanagi-Harada/Uveodermatologic Syndrome and Vitiligo Reveals Conserved Immunopathogenesis Pathways Between Dog and Human Autoimmune Pigmentary Disorders. Frontiers in Immunology, 2020, 11, 590558.	4.8	12
22	Shared inflammatory and skin-specific gene signatures reveal common drivers of discoid lupus erythematosus in canines, humans and mice. Current Research in Immunology, 2021, 2, 41-51.	2.8	8
23	Type I interferon signaling limits viral vector priming of CD8 + T cells during initiation of vitiligo and melanoma immunotherapy. Pigment Cell and Melanoma Research, 2020, 34, 683-695.	3.3	6
24	Gene Expression Analysis in Four Dogs With Canine Pemphigus Clinical Subtypes Reveals B Cell Signatures and Immune Activation Pathways Similar to Human Disease. Frontiers in Medicine, 2021, 8, 723982.	2.6	4
25	A Keratinocyte-Tethered Biologic Enables Location-Precise Treatment in Mouse Vitiligo. Journal of Investigative Dermatology, 2022, 142, 3294-3303.	0.7	4
26	Using Gene Expression Analysis to Understand Complex Autoimmune Skin Disease Patients: A Series of Four Canine Cutaneous Lupus Erythematosus Cases. Frontiers in Veterinary Science, 2022, 9, 778934.	2.2	2
27	Evaluating the use of JAK inhibitors in inflammatory connective tissue diseases in pediatric patients: an update. Expert Review of Clinical Immunology, 2022, 18, 263-272.	3.0	2
28	What is Vitiligo and How Can it Teach Us a Crucial Life Lesson?. Frontiers for Young Minds, 0, 9, .	0.8	0