Shima Pilehvar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7941955/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Microencapsulated phase change materials for enhancing the thermal performance of Portland cement concrete and geopolymer concrete for passive building applications. Energy Conversion and Management, 2017, 133, 56-66.	9.2	222
2	Mechanical properties and microscale changes of geopolymer concrete and Portland cement concrete containing micro-encapsulated phase change materials. Cement and Concrete Research, 2017, 100, 341-349.	11.0	132
3	Effect of freeze-thaw cycles on the mechanical behavior of geopolymer concrete and Portland cement concrete containing micro-encapsulated phase change materials. Construction and Building Materials, 2019, 200, 94-103.	7.2	117
4	Physical and mechanical properties of fly ash and slag geopolymer concrete containing different types of micro-encapsulated phase change materials. Construction and Building Materials, 2018, 173, 28-39.	7.2	77
5	Influence of microcapsule size and shell polarity on thermal and mechanical properties of thermoregulating geopolymer concrete for passive building applications. Energy Conversion and Management, 2018, 164, 198-209.	9.2	65
6	Utilization of urea as an accessible superplasticizer on the moon for lunar geopolymer mixtures. Journal of Cleaner Production, 2020, 247, 119177.	9.3	56
7	Influence of curing conditions on the mechanical and physical properties of chemically-activated phosphorous slag cement. Powder Technology, 2016, 288, 132-139.	4.2	55
8	Thermal analysis of geopolymer concrete walls containing microencapsulated phase change materials for building applications. Solar Energy, 2019, 178, 295-307.	6.1	44
9	Thermal performance and numerical simulation of geopolymer concrete containing different types of thermoregulating materials for passive building applications. Energy and Buildings, 2018, 173, 678-688.	6.7	41
10	Effect of temperature on geopolymer and Portland cement composites modified with Micro-encapsulated Phase Change materials. Construction and Building Materials, 2020, 252, 119055.	7.2	37
11	Influence of Microcapsule Size and Shell Polarity on the Time-Dependent Viscosity of Geopolymer Paste. Industrial & Engineering Chemistry Research, 2018, 57, 9457-9464.	3.7	34
12	Investigation of severe lunar environmental conditions on the physical and mechanical properties of lunar regolith geopolymers. Journal of Materials Research and Technology, 2021, 11, 1506-1516.	5.8	21
13	The effect of microencapsulated phase change materials on the rheology of geopolymer and Portland cement mortars. Journal of the American Ceramic Society, 2020, 103, 5852-5869.	3.8	13
14	A Temperature–Age Model For Prediction of Compressive Strength of Chemically Activated High Phosphorus Slag Content Cement. International Journal of Civil Engineering, 2017, 15, 839-847.	2.0	7