
Ashutosh Kumar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/794157/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Potential therapeutic effects of the simultaneous targeting of the Nrf2 and NF-κB pathways in diabetic neuropathy. Redox Biology, 2013, 1, 394-397.	3.9	315
2	Oxidative stress and nerve damage: Role in chemotherapy induced peripheral neuropathy. Redox Biology, 2014, 2, 289-295.	3.9	305
3	Melatonin modulates neuroinflammation and oxidative stress in experimental diabetic neuropathy: effects on NFâ€̂₽B and Nrf2 cascades. Journal of Pineal Research, 2011, 50, 124-131.	3.4	255
4	Neuroinflammation and Oxidative Stress in Diabetic Neuropathy: Futuristic Strategies Based on These Targets. International Journal of Endocrinology, 2014, 2014, 1-10.	0.6	245
5	Effects of resveratrol on nerve functions, oxidative stress and DNA fragmentation in experimental diabetic neuropathy. Life Sciences, 2007, 80, 1236-1244.	2.0	163
6	NF-κB inhibitory action of resveratrol: A probable mechanism of neuroprotection in experimental diabetic neuropathy. Biochemical and Biophysical Research Communications, 2010, 394, 360-365.	1.0	159
7	Nrf2 and NF-κB Modulation by Sulforaphane Counteracts Multiple Manifestations of Diabetic Neuropathy in Rats and High Glucose-Induced Changes. Current Neurovascular Research, 2011, 8, 294-304.	0.4	151
8	Oxidative stress and Nrf2 in the pathophysiology of diabetic neuropathy: Old perspective with a new angle. Biochemical and Biophysical Research Communications, 2011, 408, 1-5.	1.0	118
9	SNEDDS curcumin formulation leads to enhanced protection from pain and functional deficits associated with diabetic neuropathy: An insight into its mechanism for neuroprotection. Nanomedicine: Nanotechnology, Biology, and Medicine, 2013, 9, 776-785.	1.7	109
10	Melatonin prevents mitochondrial dysfunction and promotes neuroprotection by inducing autophagy during oxaliplatinâ€evoked peripheral neuropathy. Journal of Pineal Research, 2017, 62, e12393.	3.4	97
11	Suppression of NF-ήB and NF-ήB regulated oxidative stress and neuroinflammation by BAY 11-7082 (IήB) Tj ET	Qq110.78	4314 rgBT /O
12	Isoliquiritigenin reduces oxidative damage and alleviates mitochondrial impairment by SIRT1 activation in experimental diabetic neuropathy. Journal of Nutritional Biochemistry, 2017, 47, 41-52.	1.9	85
13	Targeting AMPK in Diabetes and Diabetic Complications: Energy Homeostasis, Autophagy and Mitochondrial Health. Current Medicinal Chemistry, 2019, 26, 5207-5229.	1.2	78
14	Functional and biochemical evidence indicating beneficial effect of Melatonin and Nicotinamide alone and in combination in experimental diabetic neuropathy. Neuropharmacology, 2010, 58, 585-592.	2.0	71
15	Fisetin Imparts Neuroprotection in Experimental Diabetic Neuropathy by Modulating Nrf2 and NF-κB Pathways. Cellular and Molecular Neurobiology, 2016, 36, 883-892.	1.7	70
16	Morin exerts neuroprotection via attenuation of ROS induced oxidative damage and neuroinflammation in experimental diabetic neuropathy. BioFactors, 2018, 44, 109-122.	2.6	67
17	Adenosine Monophosphate-Activated Protein Kinase Abates Hyperglycaemia-Induced Neuronal Injury in Experimental Models of Diabetic Neuropathy: Effects on Mitochondrial Biogenesis, Autophagy and Neuroinflammation. Molecular Neurobiology, 2017, 54, 2301-2312.	1.9	65
18	Concurrent targeting of nitrosative stress–PARP pathway corrects functional, behavioral and biochemical deficits in experimental diabetic neuropathy. Biochemical and Biophysical Research Communications, 2010, 391, 102-106.	1.0	54

ASHUTOSH KUMAR

#	Article	IF	CITATIONS
19	Neuroprotective potential of combination of resveratrol and 4-amino 1,8 naphthalimide in experimental diabetic neuropathy: Focus on functional, sensorimotor and biochemical changes. Free Radical Research, 2009, 43, 400-408.	1.5	52
20	Adenosine monophosphate-activated protein kinase modulation by berberine attenuates mitochondrial deficits and redox imbalance in experimental diabetic neuropathy. Neuropharmacology, 2018, 131, 256-270.	2.0	52
21	Morin Mitigates Chronic Constriction Injury (CCI)-Induced Peripheral Neuropathy by Inhibiting Oxidative Stress Induced PARP Over-Activation and Neuroinflammation. Neurochemical Research, 2016, 41, 2029-2042.	1.6	48
22	Effects of U83836E on nerve functions, hyperalgesia and oxidative stress in experimental diabetic neuropathy. Life Sciences, 2006, 79, 777-783.	2.0	47
23	Rosmarinic Acid Mitigates Mitochondrial Dysfunction and Spinal Glial Activation in Oxaliplatin-induced Peripheral Neuropathy. Molecular Neurobiology, 2018, 55, 7463-7475.	1.9	45
24	Amelioration of neurological and biochemical deficits by peroxynitrite decomposition catalysts in experimental diabetic neuropathy. European Journal of Pharmacology, 2008, 596, 77-83.	1.7	44
25	PARP inhibition attenuates neuroinflammation and oxidative stress in chronic constriction injury induced peripheral neuropathy. Life Sciences, 2016, 150, 50-60.	2.0	44
26	Oxidative Stress and Inflammation in Diabetic Complications. International Journal of Endocrinology, 2014, 2014, 1-2.	0.6	43
27	Potential Therapeutic Benefits of Maintaining Mitochondrial Health in Peripheral Neuropathies. Current Neuropharmacology, 2016, 14, 593-609.	1.4	42
28	Protective effects of 4-amino1,8-napthalimide, a poly (ADP-ribose) polymerase inhibitor in experimental diabetic neuropathy. Life Sciences, 2008, 82, 570-576.	2.0	41
29	SIRT1 Activation by Polydatin Alleviates Oxidative Damage and Elevates Mitochondrial Biogenesis in Experimental Diabetic Neuropathy. Cellular and Molecular Neurobiology, 2021, 41, 1563-1577.	1.7	41
30	Nrf2 and NF-κB modulation by Plumbagin attenuates functional, behavioural and biochemical deficits in rat model of neuropathic pain. Pharmacological Reports, 2017, 69, 625-632.	1.5	34
31	Carvedilol prevents functional deficits in peripheral nerve mitochondria of rats with oxaliplatin-evoked painful peripheral neuropathy. Toxicology and Applied Pharmacology, 2017, 322, 97-103.	1.3	33
32	Curcumin: A pleiotropic phytonutrient in diabetic complications. Nutrition, 2015, 31, 276-282.	1.1	32
33	Combination strategy of PARP inhibitor with antioxidant prevent bioenergetic deficits and inflammatory changes in CCI-induced neuropathy. Neuropharmacology, 2017, 113, 137-147.	2.0	31
34	Boswellia ovalifoliolata abrogates ROS mediated NF-κB activation, causes apoptosis and chemosensitization in Triple Negative Breast Cancer cells. Environmental Toxicology and Pharmacology, 2014, 38, 58-70.	2.0	26
35	Autophagy: The missing link in diabetic neuropathy?. Medical Hypotheses, 2016, 86, 120-128.	0.8	26
36	Bardoxolone Methyl Ameliorates Hyperglycemia Induced Mitochondrial Dysfunction by Activating the keap1-Nrf2-ARE Pathway in Experimental Diabetic Neuropathy. Molecular Neurobiology, 2020, 57, 3616-3631.	1.9	26

Ashutosh Kumar

#	Article	IF	CITATIONS
37	Probucol attenuates NF-κB/NLRP3 signalling and augments Nrf-2 mediated antioxidant defence in nerve injury induced neuropathic pain. International Immunopharmacology, 2022, 102, 108397.	1.7	22
38	Nrf2: a promising trove for diabetic wound healing. Annals of Translational Medicine, 2017, 5, 469-469.	0.7	19
39	In-vitro and In-vivo evaluation of biocompatible and biodegradable calcium-modified carboxymethyl starch as a topical hemostat. Materialia, 2019, 7, 100373.	1.3	18
40	LONP1 induction by SRT1720 attenuates mitochondrial dysfunction against high glucose induced neurotoxicity in PC12 cells. Toxicology in Vitro, 2020, 62, 104695.	1.1	18
41	Chronic hyperglycemia impairs mitochondrial unfolded protein response and precipitates proteotoxicity in experimental diabetic neuropathy: focus on LonP1 mediated mitochondrial regulation. Pharmacological Reports, 2020, 72, 1627-1644.	1.5	18
42	Poly(ADP-ribose) polymerase inhibition reveals a potential mechanism to promote neuroprotection and treat neuropathic pain. Neural Regeneration Research, 2016, 11, 1545.	1.6	16
43	Neurological Implications of COVID-19: Role of Redox Imbalance and Mitochondrial Dysfunction. Molecular Neurobiology, 2021, 58, 4575-4587.	1.9	15
44	Editorial (Thematic Selection: Mitochondrial Dysfunction & Neurological Disorders). Current Neuropharmacology, 2016, 14, 565-566.	1.4	9
45	In-vitro and in-vivo evaluation of modified sodium starch glycolate for exploring its haemostatic potential. Carbohydrate Polymers, 2020, 235, 115975.	5.1	8
46	An Overview on ATP Dependent and Independent Proteases Including an Anterograde to Retrograde Control on Mitochondrial Function; Focus on Diabetes and Diabetic Complications. Current Pharmaceutical Design, 2019, 25, 2584-2594.	0.9	8
47	Neuroprotective Effect of Baicalein Against Oxaliplatin-Induced Peripheral Neuropathy: Impact on Oxidative Stress, Neuro-inflammation and WNT/β-Catenin Signaling. Molecular Neurobiology, 2022, 59, 4334-4350.	1.9	8
48	Comment on Sharma. Mitochondrial Hormesis and Diabetic Complications. Diabetes 2015;64:663–672. Diabetes, 2015, 64, e32-e33.	0.3	7
49	Metabolic Stress and Inflammation: Implication in Treatment for Neurological Disorders. CNS and Neurological Disorders - Drug Targets, 2018, 17, 642-643.	0.8	7
50	Role of AMPK in Diabetic Cardiovascular Complications: An Overview. Cardiovascular & Hematological Disorders Drug Targets, 2019, 19, 5-13.	0.2	6
51	FeTMPyP a peroxynitrite decomposition catalyst ameliorated functional and behavioral deficits in chronic constriction injury induced neuropathic pain in rats. Free Radical Research, 2022, , 1-13.	1.5	4
52	Re. "Sucrose, fructose, glucose and their link to metabolic syndrome and cancer― Nutrition, 2015, 31, 258-259.	1.1	2
53	Rosmarinic acid and mitochondria. , 2021, , 209-231.		1
54	Adopting Nrf2 and NF-κB from cancer: Is there any role of the duo in diabetes?. Nature Precedings, 0, , .	0.1	1

#	Article	IF	CITATIONS
55	Adopting Nrf2 and NF- \hat{I}^{e} B from cancer: Is there any role of the duo in diabetes?. Nature Precedings, 2011, , .	0.1	0