Sean J Morrison

List of Publications by Citations

Source: https://exaly.com/author-pdf/7941260/sean-j-morrison-publications-by-citations.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

35,761 96 109 55 h-index g-index citations papers 25.8 109 40,514 7.55 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
96	Stem cells, cancer, and cancer stem cells. <i>Nature</i> , 2001 , 414, 105-11	50.4	7504
95	SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. <i>Cell</i> , 2005 , 121, 1109-21	56.2	2459
94	Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells. <i>Nature</i> , 2003 , 423, 302-5	50.4	1587
93	The bone marrow niche for haematopoietic stem cells. <i>Nature</i> , 2014 , 505, 327-34	50.4	1479
92	Efficient tumour formation by single human melanoma cells. <i>Nature</i> , 2008 , 456, 593-8	50.4	1463
91	Stem cells and niches: mechanisms that promote stem cell maintenance throughout life. <i>Cell</i> , 2008 , 132, 598-611	56.2	1449
90	Fusion of bone-marrow-derived cells with Purkinje neurons, cardiomyocytes and hepatocytes. <i>Nature</i> , 2003 , 425, 968-73	50.4	1381
89	Endothelial and perivascular cells maintain haematopoietic stem cells. <i>Nature</i> , 2012 , 481, 457-62	50.4	1285
88	Bmi-1 dependence distinguishes neural stem cell self-renewal from progenitor proliferation. <i>Nature</i> , 2003 , 425, 962-7	50.4	1107
87	Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells. <i>Nature</i> , 2006 , 441, 475-82	50.4	1104
86	Asymmetric and symmetric stem-cell divisions in development and cancer. <i>Nature</i> , 2006 , 441, 1068-74	50.4	1021
85	The long-term repopulating subset of hematopoietic stem cells is deterministic and isolatable by phenotype. <i>Immunity</i> , 1994 , 1, 661-73	32.3	880
84	Haematopoietic stem cells and early lymphoid progenitors occupy distinct bone marrow niches. <i>Nature</i> , 2013 , 495, 231-5	50.4	835
83	Increasing p16INK4a expression decreases forebrain progenitors and neurogenesis during ageing. <i>Nature</i> , 2006 , 443, 448-52	50.4	793
82	Leptin-receptor-expressing mesenchymal stromal cells represent the main source of bone formed by adult bone marrow. <i>Cell Stem Cell</i> , 2014 , 15, 154-68	18	737
81	The aging of hematopoietic stem cells. <i>Nature Medicine</i> , 1996 , 2, 1011-6	50.5	691
80	Oxidative stress inhibits distant metastasis by human melanoma cells. <i>Nature</i> , 2015 , 527, 186-91	50.4	681

(2020-2000)

79	Transient Notch activation initiates an irreversible switch from neurogenesis to gliogenesis by neural crest stem cells. <i>Cell</i> , 2000 , 101, 499-510	56.2	617
78	Hmga2 promotes neural stem cell self-renewal in young but not old mice by reducing p16Ink4a and p19Arf Expression. <i>Cell</i> , 2008 , 135, 227-39	56.2	489
77	Phenotypic heterogeneity among tumorigenic melanoma cells from patients that is reversible and not hierarchically organized. <i>Cancer Cell</i> , 2010 , 18, 510-23	24.3	481
76	Bmi-1 promotes neural stem cell self-renewal and neural development but not mouse growth and survival by repressing the p16Ink4a and p19Arf senescence pathways. <i>Genes and Development</i> , 2005 , 19, 1432-7	12.6	480
75	Deep imaging of bone marrow shows non-dividing stem cells are mainly perisinusoidal. <i>Nature</i> , 2015 , 526, 126-30	50.4	428
74	Mechanisms of stem cell self-renewal. Annual Review of Cell and Developmental Biology, 2009, 25, 377-4	06 .6	418
73	SLAM family markers resolve functionally distinct subpopulations of hematopoietic stem cells and multipotent progenitors. <i>Cell Stem Cell</i> , 2013 , 13, 102-16	18	388
72	Adult haematopoietic stem cell niches. <i>Nature Reviews Immunology</i> , 2017 , 17, 573-590	36.5	379
71	Lkb1 regulates cell cycle and energy metabolism in haematopoietic stem cells. <i>Nature</i> , 2010 , 468, 653-8	50.4	378
70	Haematopoietic stem cells require a highly regulated protein synthesis rate. <i>Nature</i> , 2014 , 509, 49-54	50.4	351
69	Culture in reduced levels of oxygen promotes clonogenic sympathoadrenal differentiation by isolated neural crest stem cells. <i>Journal of Neuroscience</i> , 2000 , 20, 7370-6	6.6	342
68	Ascorbate regulates haematopoietic stem cell function and leukaemogenesis. <i>Nature</i> , 2017 , 549, 476-48	89 0.4	272
67	Mechanisms that regulate stem cell aging and life span. Cell Stem Cell, 2013, 12, 152-65	18	245
66	Neural crest stem cells undergo multilineage differentiation in developing peripheral nerves to generate endoneurial fibroblasts in addition to Schwann cells. <i>Development (Cambridge)</i> , 2004 , 131, 559	96-612	238
65	Oestrogen increases haematopoietic stem-cell self-renewal in females and during pregnancy. <i>Nature</i> , 2014 , 505, 555-8	50.4	235
64	Leptin Receptor Promotes Adipogenesis and Reduces Osteogenesis by Regulating Mesenchymal Stromal Cells in Adult Bone Marrow. <i>Cell Stem Cell</i> , 2016 , 18, 782-796	18	233
63	Bone marrow adipocytes promote the regeneration of stem cells and haematopoiesis by secreting SCF. <i>Nature Cell Biology</i> , 2017 , 19, 891-903	23.4	229
62	Lymph protects metastasizing melanoma cells from ferroptosis. <i>Nature</i> , 2020 , 585, 113-118	50.4	176

61	CXCL12-Producing Vascular Endothelial Niches Control Acute T Cell Leukemia Maintenance. <i>Cancer Cell</i> , 2015 , 27, 755-68	24.3	175
60	Prdm16 promotes stem cell maintenance in multiple tissues, partly by regulating oxidative stress. Nature Cell Biology, 2010 , 12, 999-1006	23.4	154
59	mTOR activation induces tumor suppressors that inhibit leukemogenesis and deplete hematopoietic stem cells after Pten deletion. <i>Cell Stem Cell</i> , 2010 , 7, 593-605	18	149
58	Temporal changes in PTEN and mTORC2 regulation of hematopoietic stem cell self-renewal and leukemia suppression. <i>Cell Stem Cell</i> , 2012 , 11, 415-28	18	147
57	A perisinusoidal niche for extramedullary haematopoiesis in the spleen. <i>Nature</i> , 2015 , 527, 466-471	50.4	145
56	Metabolic heterogeneity confers differences in melanoma metastatic potential. <i>Nature</i> , 2020 , 577, 115	-15204	141
55	Cancer, Oxidative Stress, and Metastasis. <i>Cold Spring Harbor Symposia on Quantitative Biology</i> , 2016 , 81, 163-175	3.9	136
54	Lens regeneration using endogenous stem cells with gain of visual function. <i>Nature</i> , 2016 , 531, 323-8	50.4	125
53	Cellular differences in protein synthesis regulate tissue homeostasis. <i>Cell</i> , 2014 , 159, 242-51	56.2	125
52	Hematopoietic stem and progenitor cells regulate the regeneration of their niche by secreting Angiopoietin-1. <i>ELife</i> , 2015 , 4, e05521	8.9	114
51	Infection mobilizes hematopoietic stem cells through cooperative NOD-like receptor and Toll-like receptor signaling. <i>Cell Host and Microbe</i> , 2014 , 15, 779-91	23.4	109
50	Prospective identification of functionally distinct stem cells and neurosphere-initiating cells in adult mouse forebrain. <i>ELife</i> , 2014 , 3, e02669	8.9	95
49	Oncogenic Nras has bimodal effects on stem cells that sustainably increase competitiveness. <i>Nature</i> , 2013 , 504, 143-147	50.4	82
48	Human melanoma metastasis in NSG mice correlates with clinical outcome in patients. <i>Science Translational Medicine</i> , 2012 , 4, 159ra149	17.5	81
47	Toward an understanding of the physiological function of Mammalian stem cells. <i>Developmental Cell</i> , 2005 , 9, 173-83	10.2	81
46	Restricted Hematopoietic Progenitors and Erythropoiesis Require SCF from Leptin Receptor+ Niche Cells in the Bone Marrow. <i>Cell Stem Cell</i> , 2019 , 24, 477-486.e6	18	79
45	HIV-1 utilizes the CXCR4 chemokine receptor to infect multipotent hematopoietic stem and progenitor cells. <i>Cell Host and Microbe</i> , 2011 , 9, 223-234	23.4	76
44	Light-sheet microscopy of cleared tissues with isotropic, subcellular resolution. <i>Nature Methods</i> , 2019 , 16, 1109-1113	21.6	69

(2017-2009)

43	Bmi-1 over-expression in neural stem/progenitor cells increases proliferation and neurogenesis in culture but has little effect on these functions in vivo. <i>Developmental Biology</i> , 2009 , 328, 257-72	3.1	68	
42	Loss of EZH2 Reprograms BCAA Metabolism to Drive Leukemic Transformation. <i>Cancer Discovery</i> , 2019 , 9, 1228-1247	24.4	61	
41	A mechanosensitive peri-arteriolar niche for osteogenesis and lymphopoiesis. <i>Nature</i> , 2021 , 591, 438-4	4 4 0.4	52	
40	In-Depth Evaluation of a Case of Presumed Myocarditis After the Second Dose of COVID-19 mRNA Vaccine. <i>Circulation</i> , 2021 , 144, 487-498	16.7	52	
39	Clec11a/osteolectin is an osteogenic growth factor that promotes the maintenance of the adult skeleton. <i>ELife</i> , 2016 , 5,	8.9	51	
38	CD150- cells are transiently reconstituting multipotent progenitors with little or no stem cell activity. <i>Blood</i> , 2008 , 111, 4413-4; author reply 4414-5	2.2	49	
37	The rate of protein synthesis in hematopoietic stem cells is limited partly by 4E-BPs. <i>Genes and Development</i> , 2016 , 30, 1698-703	12.6	48	
36	Precise let-7 expression levels balance organ regeneration against tumor suppression. <i>ELife</i> , 2015 , 4, e09431	8.9	37	
35	Integrin alpha11 is an Osteolectin receptor and is required for the maintenance of adult skeletal bone mass. <i>ELife</i> , 2019 , 8,	8.9	35	
34	Prdm16 is required for the maintenance of neural stem cells in the postnatal forebrain and their differentiation into ependymal cells. <i>Genes and Development</i> , 2017 , 31, 1134-1146	12.6	32	
33	Synergistic effects of ion transporter and MAP kinase pathway inhibitors in melanoma. <i>Nature Communications</i> , 2016 , 7, 12336	17.4	29	
32	27-Hydroxycholesterol induces hematopoietic stem cell mobilization and extramedullary hematopoiesis during pregnancy. <i>Journal of Clinical Investigation</i> , 2017 , 127, 3392-3401	15.9	29	
31	The abundance of metabolites related to protein methylation correlates with the metastatic capacity of human melanoma xenografts. <i>Science Advances</i> , 2017 , 3, eaao5268	14.3	28	
30	CD4 is expressed on a heterogeneous subset of hematopoietic progenitors, which persistently harbor CXCR4 and CCR5-tropic HIV proviral genomes in vivo. <i>PLoS Pathogens</i> , 2017 , 13, e1006509	7.6	27	
29	Niches that regulate stem cells and hematopoiesis in adult bone marrow. <i>Developmental Cell</i> , 2021 , 56, 1848-1860	10.2	26	
28	Bmi1 is required for the initiation of pancreatic cancer through an Ink4a-independent mechanism. <i>Carcinogenesis</i> , 2015 , 36, 730-8	4.6	25	
27	TLR9 and beclin crosstalk regulates muscle AMPK activation in exercise. <i>Nature</i> , 2020 , 578, 605-609	50.4	24	
26	Digoxin Plus Trametinib Therapy Achieves Disease Control in BRAF Wild-Type Metastatic Melanoma Patients. <i>Neoplasia</i> , 2017 , 19, 255-260	6.4	23	

25	TRPML1 Promotes Protein Homeostasis in Melanoma Cells by Negatively Regulating MAPK and mTORC1 Signaling. <i>Cell Reports</i> , 2019 , 28, 2293-2305.e9	10.6	20
24	Distinct Brca1 Mutations Differentially Reduce Hematopoietic Stem Cell Function. <i>Cell Reports</i> , 2017 , 18, 947-960	10.6	17
23	Metabolomic profiling of rare cell populations isolated by flow cytometry from tissues. <i>ELife</i> , 2021 , 10,	8.9	14
22	Identification of Fibroblast Activation Protein as an Osteogenic Suppressor and Anti-osteoporosis Drug Target. <i>Cell Reports</i> , 2020 , 33, 108252	10.6	8
21	Redox Regulation in Cancer Cells during Metastasis. Cancer Discovery, 2021, 11, 2682-2692	24.4	7
20	Metabolic Adaptation Fuels Lymph Node Metastasis. Cell Metabolism, 2019, 29, 785-786	24.6	6
19	Cell size is a determinant of stem cell potential during aging. Science Advances, 2021, 7, eabk0271	14.3	6
18	Aspartate availability limits hematopoietic stem cell function during hematopoietic regeneration. <i>Cell Stem Cell</i> , 2021 , 28, 1982-1999.e8	18	5
17	Stable isotope tracing to assess tumor metabolism in vivo. <i>Nature Protocols</i> , 2021 , 16, 5123-5145	18.8	4
16	Metabolic regulation of somatic stem cells in vivo Nature Reviews Molecular Cell Biology, 2022,	48.7	4
15	Author response: A network of heterochronic genes including Imp1 regulates temporal changes in stem cell properties 2013 ,		3
14	Stem cells, cancer, and cancer stem cells		3
13	Cell size is a determinant of stem cell potential during aging		2
12	Light-sheet microscopy with isotropic, sub-micron resolution and solvent-independent large-scale imag	jing	2
11	Heterogeneity in PHGDH protein expression potentiates cancer cell dissemination and metastasis		2
10	Identifying metabolomic features that predict metastasis of melanoma from a primary site. <i>Cancer & Metabolism</i> , 2014 , 2,	5.4	1
9	Metabolomic profiling of rare cell populations isolated by flow cytometry from tissues		1
8	New guidelines for stem cell and embryo research from the ISSCR. Cell Stem Cell, 2021, 28, 991-992	18	O

LIST OF PUBLICATIONS

7	Adiponectin receptors sustain haematopoietic stem cells throughout adulthood by protecting them from inflammation <i>Nature Cell Biology</i> , 2022 , 24, 697-707	23.4	O
6	Evaluation of Xie etlal.: Sphingolipid Modulation Activates Proteostasis Programs to Govern Human Hematopoietic Stem Cell Self-Renewal. <i>Cell Stem Cell</i> , 2019 , 25, 585-586	18	
5	Reticular Dysgenesis-Associated Adenylate Kinase 2 Deficiency Impairs Hematopoietic Stem and Progenitor Cell Function through Reductive Stress. <i>Blood</i> , 2020 , 136, 33-33	2.2	
4	Therapeutic Synergy from Combined Inhibition of the SERCA Channel and MAPK Signaling Pathway in MAPK-Dependent Leukemia. <i>Blood</i> , 2015 , 126, 1264-1264	2.2	
3	Digoxin plus trametinib therapy of BRAF wild type metastatic melanoma patients <i>Journal of Clinical Oncology</i> , 2016 , 34, 9527-9527	2.2	
2	Oncogenic Nras Increases Hematopoietic Stem Cell Proliferation and Self-Renewal Through a Bimodal Effect. <i>Blood</i> , 2012 , 120, 119-119	2.2	
1	Beth Levine M.D. Prize in Autophagy Research. <i>Autophagy</i> ,1-1	10.2	