Alexandre V Ivachtchenko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7940758/publications.pdf

Version: 2024-02-01

65 papers 1,378 citations

279798 23 h-index 34 g-index

75 all docs 75 docs citations

75 times ranked 1366 citing authors

#	Article	IF	CITATIONS
1	Synthesis, inhibitory activity and oral dosing formulation of AV5124, the structural analogue of influenza virus endonuclease inhibitor baloxavir. Journal of Antimicrobial Chemotherapy, 2021, 76, 1010-1018.	3.0	7
2	Non-rigid Diarylmethyl Analogs of Baloxavir as Cap-Dependent Endonuclease Inhibitors of Influenza Viruses. Journal of Medicinal Chemistry, 2020, 63, 9403-9420.	6.4	15
3	Synthesis of 7-arylimidazo[1,2-a]pyrazin-8(7H)-one derivatives. Chemistry of Heterocyclic Compounds, 2019, 55, 386-391.	1.2	1
4	AVN-101: A Multi-Target Drug Candidate for the Treatment of CNS Disorders. Journal of Alzheimer's Disease, 2016, 53, 583-620.	2.6	33
5	Non-dopamine receptor ligands for the treatment of Parkinson's disease. Insight into the related chemical/property space. Molecular Diversity, 2016, 20, 345-365.	3.9	1
6	Synthesis of substituted diphenyl sulfones and their structure–activity relationship with the antagonism of 5-ĐĐ¢6 receptors. Bioorganic and Medicinal Chemistry, 2013, 21, 4614-4627.	3.0	17
7	Small Molecule 5-HT6R Ligands: A Comprehensive Insight into their Selectivity and Activity. Current Bioactive Compounds, 2013, 9, 64-100.	0.5	13
8	Antagonists of 5-HT6 receptors. Substituted 3-(phenylsulfonyl)pyrazolo[1,5-a]pyrido[3,4-e]pyrimidines and 3-(phenylsulfonyl)pyrazolo[1,5-a]pyrido[4,3-d]pyrimidinesâ€"Synthesis and â€~structure–activity' relationship. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 4273-4280.	2.2	19
9	5-HT6receptor modulators: a patent update. Part 2. Diversity in heterocyclic scaffolds. Expert Opinion on Therapeutic Patents, 2012, 22, 1123-1168.	5.0	15
10	5HT6receptor antagonists: a patent update. Part 1. Sulfonyl derivatives. Expert Opinion on Therapeutic Patents, 2012, 22, 917-964.	5.0	17
11	Synthesis and Structure–Activity Relationship (SAR) of (5,7-Disubstituted) Tj ETQq1 1 0.784314 rgBT /Overloc 5-HT ₆ Receptor (5-HT ₆ R) Antagonists. Journal of Medicinal Chemistry, 2011, 54,	k 10 Tf 50 6.4	
12	2-Substituted 5,6-dimethyl-3-phenylsulfonyl-pyrazolo[1,5-a]pyrimidines: New series of highly potent and specific serotonin 5-HT6 receptor antagonists. European Journal of Medicinal Chemistry, 2011, 46, 1189-1197.	5.5	35
13	(3-Phenylsulfonylcycloalkano[$<$ i>e $<$ i> and $<$ i>d $<$ i $>$]pyrazolo[1,5- $<$ i>a $<$ i>]pyrimidin-2-yl)amines: Potent and Selective Antagonists of the Serotonin 5-HT $<$ sub $>$ 6 $<$ sub $>$ Receptor. Journal of Medicinal Chemistry, 2010, 53, 5186-5196.	6.4	54
14	8-Sulfonyl-substituted tetrahydro-1 H -pyrido[4,3- b] indoles as 5-HT 6 receptor antagonists. European Journal of Medicinal Chemistry, 2010, 45, 782-789.	5.5	16
15	General Multicomponent Strategy for the Synthesis of 2â€Aminoâ€1,4â€diazaheterocycles: Scope, Limitations, and Utility. European Journal of Organic Chemistry, 2010, 2010, 1525-1543.	2.4	24
16	Synthesis and biological activity of 5-styryl and 5-phenethyl-substituted 2,3,4,5-tetrahydro-1H-pyrido[4,3-b]indoles. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 78-82.	2.2	28
17	5-hydroxytryptamine subtype 6 receptor modulators: a patent survey. Expert Opinion on Therapeutic Patents, 2010, 20, 1171-1196.	5.0	28

Synthesis and Biological Evaluation of Novel 5,8â€Disubstitutedâ€2â€methylâ€2,3,4,5â€tetrahydroâ€1<i>H</i>à 6€pyrido[4,3â€<i>b</i>] indoles as 5â€HT<sub₄£</sub> and H₁ Receptors Antagonists. Archiv Der Pharmazie, 2009, 342, 740-747.

#	Article	IF	CITATIONS
19	Multicomponent approach to unique 1,4-diazepine-2-amines. Tetrahedron Letters, 2009, 50, 2854-2856.	1.4	16
20	A convenient synthesis of heterocyclic compounds containing 11 -oxo-6,11,12,13-tetrahydrodibenzo[b,g][1,5]oxazonine fragment. Mendeleev Communications, 2009, 19, 287-289.	1.6	7
21	One-step assembly of novel carbamoyl substituted 6-oxo-4,5,6,11-tetrahydropyrrolo[1,2-b][2,5]benzodiazocine. Tetrahedron Letters, 2009, 50, 2790-2792.	1.4	12
22	Synthesis and biological evaluation of novel \hat{I}^3 -carboline analogues of Dimebon as potent 5-HT6 receptor antagonists. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 3183-3187.	2.2	46
23	Trimethylsilyl Chloride as a Promoter for the Groebke–Blackburn Reaction: Preparation of Imidazo[2,1-b][1,3]Benzothiazoles. Synthetic Communications, 2009, 40, 111-119.	2.1	12
24	Poorly reactive 5-piperazin-1-yl-1,3,4-thiadiazol-2-amines rendered as valid substrates for Groebke–Blackburn type multi-component reaction with aldehydes and isocyanides using TMSCl as a promoter. Tetrahedron Letters, 2008, 49, 5241-5243.	1.4	41
25	Synthesis of the Substituted 3â€Cyclobuteneâ€1,2â€diones. Synthetic Communications, 2007, 37, 2527-2542.	2.1	14
26	TMSCl-promoted isocyanide-based MCR of ethylenediamines: an efficient assembling of 2-aminopyrazine core. Tetrahedron Letters, 2007, 48, 6239-6244.	1.4	28
27	Synthesis of 7â€Sulfamoylâ€substituted 2â€Oxoâ€2,3,4,5â€tetrahydroâ€1Hâ€benzo[b]azepines. Synthetic Communications, 2006, 36, 3525-3535.	2.1	3
28	One-Step Assembly of Carbamoyl-Substituted Heteroannelated [1,4]Thiazepines. Journal of Organic Chemistry, 2006, 71, 2811-2819.	3.2	52
29	Synthesis and Chemical Transformations of 6â€(Morpholineâ€4â€sulfonyl)â€quinolineâ€2,3,4â€tricarboxylic Acid. Synthetic Communications, 2006, 36, 911-917.	`2.1	10
30	Synthesis of 7,8â€Dihydrothieno[3′,2′:4,5]pyrrolo[1,2â€a]pyrazinâ€5(6H)â€ones Using a Modification of Fourâ€Component Ugi Reaction. Synthetic Communications, 2006, 36, 903-910.	2.1	13
31	Natural products as templates for bioactive compound libraries: synthesis of biaryl derivatives of (\hat{A}_{\pm}) -vasicine. Natural Product Research, 2006, 20, 735-741.	1.8	16
32	One-step assembly of carbamoyl substituted annulated 1,4-oxazepines. Tetrahedron Letters, 2006, 47, 2649-2653.	1.4	27
33	Synthesis of Annelated Azaheterocycles Containing a 5-Carbamoylpyrazin-3-one Fragment by a Modification of the Four-Component Ugi Reaction ChemInform, 2006, 37, no.	0.0	0
34	Convenient synthesis of novel 5-substituted 3-methylisoxazole-4-sulfonamides. Journal of Heterocyclic Chemistry, 2006, 43, 663-671.	2.6	1
35	NEW FOUR-COMPONENT UGI-TYPE REACTION. SYNTHESIS OF 3-METHYL-1-OXO-1,3,4,6,11,11a-HEXAHYDRO-2H-PYRAZINO [1,2-b] ISOQUINOLINE-3-CARBOXAMIDES. Heterocyclic Communications, 2006, 12, .	1.2	7
36	Screening for Caspase-3 Inhibitors: Effect of a Reducing Agent on Identified Hit Chemotypes. Journal of Biomolecular Screening, 2006, 11 , 694-703.	2.6	27

#	Article	IF	CITATIONS
37	Screening for Caspase-3 Inhibitors: A New Class of Potent Small-Molecule Inhibitors of Caspase-3. Journal of Biomolecular Screening, 2006, 11, 277-285.	2.6	19
38	An efficient synthesis of novel heterocycle-fused derivatives of 1-oxo-1,2,3,4-tetrahydropyrazine using Ugi condensation. Tetrahedron Letters, 2005, 46, 881-884.	1.4	26
39	A novel mesoionic ring system: unusual cyclization of thio- and amino-acid derivatives of 6-azauracil. Tetrahedron Letters, 2005, 46, 5325-5328.	1.4	6
40	Pyrrolo[3,4-c]quinoline-1,3-diones as potent caspase-3 inhibitors. Synthesis and SAR of 2-substituted 4-methyl-8-(morpholine-4-sulfonyl)-pyrrolo[3,4-c]quinoline-1,3-diones. European Journal of Medicinal Chemistry, 2005, 40, 1377-1383.	5. 5	61
41	Parallel Liquid-Phase Synthesis of N-Substituted 6-Aminosulfonyl-2-oxo-1,2-dihydroquinoline-4-carboxamide and 6-Aminosulfonylquinoline-4-carboxamide Derivatives. ACS Combinatorial Science, 2005, 7, 227-235.	3.3	13
42	Synthesis and caspase-3 inhibitory activity of 8-sulfonyl-1,3-dioxo-2,3-dihydro-1H-pyrrolo[3,4-c]quinolines. Il Farmaco, 2005, 60, 804-809.	0.9	27
43	Synthesis of Annelated Azaheterocycles Containing a 5-Carbamoylpyrazin-3-one Fragment by a Modification of the Four-Component Ugi Reaction. European Journal of Organic Chemistry, 2005, 2005, 4670-4679.	2.4	10
44	An Efficient Synthesis of Novel Heterocycle-Fused Derivatives of 1-Oxo-1,2,3,4-tetrahydropyrazine Using Ugi Condensation ChemInform, 2005, 36, no.	0.0	0
45	Synthesis of Pinacol Esters of 1-Alkyl-1H-pyrazol-5-yl- and 1-Alkyl-1H-pyrazol-4-ylboronic Acids ChemInform, 2005, 36, no.	0.0	0
46	1,3-Dioxo-4-methyl-2,3-dihydro-1H-pyrrolo[3,4-c]quinolines as Potent Caspase-3 Inhibitors ChemInform, 2005, 36, no.	0.0	0
47	Parallel Liquid-Phase Synthesis of N-Substituted 6-Aminosulfonyl-2-oxo-1,2-dihydroquinoline-4-carboxamide and 6-Aminosulfonylquinoline-4-carboxamide Derivatives ChemInform, 2005, 36, no.	0.0	0
48	Convenient Synthesis of Substituted 5-(Hydroxymethyl)-8-methyl-3-(4-phenylquinazolin-2-yl)-2H-pyrano [2,3-c]pyridin-2-ones Chemlnform, 2005, 36, no.	0.0	0
49	1,3-Dioxo-4-methyl-2,3-dihydro-1H-pyrrolo[3,4-c]quinolines as potent caspase-3 inhibitors. Bioorganic and Medicinal Chemistry Letters, 2005, 15, 1841-1845.	2.2	55
50	Synthesis and antimicrobial activity of 5-hydroxymethyl-8-methyl-2-(N-arylimino)-pyrano[2,3-c]pyridine-3-(N-aryl)-carboxamides. Bioorganic and Medicinal Chemistry Letters, 2005, 15, 5483-5487.	2.2	65
51	Convenient Synthesis of Substituted 5â€(Hydroxymethyl)â€8â€methylâ€3â€(4â€phenylquinazolinâ€2â€yl)â€2Hâ€pyrano[2,3â€e]pyridinâ€2â€ones. Communications, 2005, 35, 1641-1647.	Synthetic	4
52	AN EFFICIENT SYNTHESIS OF 3-OXO-1,2,3,4-TETRAHYDROPYRROLO [1,2- $\hat{1}$ ±]PYRAZINE-1-CARBOXAMIDES USING NOVEL MODIFICATION OF UGI CONDENSATION. Heterocyclic Communications, 2005, 11, .	1.2	10
53	One-Step Construction of Peptidomimetic 5-Carbamoyl-4-sulfonyl-2-piperazinones. ACS Combinatorial Science, 2005, 7, 360-363.	3.3	24
54	Synthesis and Structureâ-'Activity Relationship of 4-Substituted 2-(2-Acetyloxyethyl)-8-(morpholine-) Tj ETQq0 0 0	o rgBT /Ove	erlock 10 Tf ! 79

4

Chemistry, 2005, 48, 3680-3683.

54

#	Article	IF	CITATIONS
55	New Four-Component Ugi-Type Reaction. Synthesis of Heterocyclic Structures Containing a Pyrrolo[1,2-a][1,4]diazepine Fragment. Journal of Organic Chemistry, 2005, 70, 1478-1481.	3.2	45
56	Synthesis of 4-Oxo-4,5,6,7-tetrahydropyrazolo[1,5-a]pyrazine-6-carboxamides Using a Modification of Ugi Condensation. ACS Combinatorial Science, 2005, 7, 806-808.	3.3	17
57	Synthesis of substituted 3â€(5â€aminoâ€[1,3,4]thiadiazolâ€2â€yl)â€2 <i>H</i> à€pyrano[2,3â€ <i>c</i>]pyridinâ Journal of Heterocyclic Chemistry, 2004, 41, 517-524.	€2â€ones 2.6	. 11
58	Synthesis of pinacol esters of 1â€alkylâ€1 <i>H</i> à€pyrazolâ€5â€yl―and 1â€alkylâ€1 <i>H</i> à€pyrazolâ€4â€y Journal of Heterocyclic Chemistry, 2004, 41, 931-939.	ylboronic a 2.6	acids. 29
59	Synthesis of Substituted Thienopyrimidine-4-ones ChemInform, 2004, 35, no.	0.0	0
60	A new insight into the Pfitzinger reaction. A facile synthesis of 6-sulfamoylquinoline-4-carboxylic acids. Tetrahedron Letters, 2004, 45, 5473-5476.	1.4	36
61	Access to novel substituted diazaadamantanes via semi-natural tetrahydrocytisine. Tetrahedron Letters, 2004, 45, 6733-6736.	1.4	16
62	Synthesis of Substituted Thienopyrimidine-4-ones. ACS Combinatorial Science, 2004, 6, 573-583.	3.3	23
63	New Scaffolds for Combinatorial Synthesis. II. 6-Sulfamoylquinolinecarboxylic Acids. ACS Combinatorial Science, 2003, 5, 645-652.	3.3	24
64	Synthesis of 2-chloromethyl-4-oxo-3,4-dihydroquinazoline-7-carboxylic acid methyl ester., 2003,, 289.		0
65	New Scaffolds for Combinatorial Synthesis. 1. 5-Sulfamoylisatins and Their Reactions with 1,2-Diamines. ACS Combinatorial Science, 2002, 4, 419-428.	3.3	16