Takuma Yasuda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7940604/publications.pdf

Version: 2024-02-01

142 papers 11,424 citations

25034 57 h-index 30087 103 g-index

143 all docs

143
docs citations

143 times ranked 7654 citing authors

#	Article	IF	CITATIONS
1	Ester-functionalized thermally activated delayed fluorescence materials. Journal of Materials Chemistry C, 2022, 10, 4574-4578.	5.5	1
2	Achieving Ultimate Narrowband and Ultrapure Blue Organic Lightâ€Emitting Diodes Based on Polycycloâ€Heteraborin Multiâ€Resonance Delayedâ€Fluorescence Emitters. Advanced Materials, 2022, 34, e2107951.	21.0	133
3	Axially chiral $1,1\hat{a}\in^2$ -bicarbazolyls with near-ultraviolet circularly polarized luminescence. Chemical Communications, 2022, 58, 4849-4852.	4.1	3
4	Blue Thermally Activated Delayed Fluorescence with Subâ€Microsecond Short Exciton Lifetimes: Acceleration of Triplet–Singlet Spin Interconversion via Quadrupolar Chargeâ€Transfer States. Advanced Optical Materials, 2022, 10, .	7.3	11
5	Ultrafast Triplet–Singlet Exciton Interconversion in Narrowband Blue Organoboron Emitters Doped with Heavy Chalcogens. Angewandte Chemie, 2022, 134, .	2.0	16
6	Ultrafast Triplet–Singlet Exciton Interconversion in Narrowband Blue Organoboron Emitters Doped with Heavy Chalcogens. Angewandte Chemie - International Edition, 2022, 61, .	13.8	80
7	Regiocontrolled synthesis of ester-functionalized polythiophenes via direct arylation polycondensation. Polymer Journal, 2021, 53, 403-408.	2.7	2
8	Phenylâ€triggered photophysical switching between normal fluorescence and delayed fluorescence in phthalonitrileâ€based luminophores. Aggregate, 2021, 2, 145-150.	9.9	16
9	<i>cis</i> àêQuinacridoneâ€Based Delayed Fluorescence Emitters: Seemingly Old but Renewed Functional Luminogens. Angewandte Chemie - International Edition, 2021, 60, 7643-7648.	13.8	74
10	Thermal equilibration between singlet and triplet excited states in organic fluorophore for submicrosecond delayed fluorescence. Science Advances, 2021, 7, .	10.3	79
11	<i>cis</i> àêQuinacridoneâ€Based Delayed Fluorescence Emitters: Seemingly Old but Renewed Functional Luminogens. Angewandte Chemie, 2021, 133, 7721-7726.	2.0	16
12	Alternating Donor–Acceptor π onjugated Macrocycle Exhibiting Efficient Thermally Activated Delayed Fluorescence and Spontaneous Horizontal Molecular Orientation. Advanced Photonics Research, 2021, 2, 2100021.	3.6	14
13	Regulation of Multicolor Fluorescence Changes Found in Donorâ€acceptorâ€type Mechanochromic Fluorescent Dyes. Chemistry - an Asian Journal, 2021, 16, 2136-2145.	3.3	12
14	Fusedâ€Nonacyclic Multiâ€Resonance Delayed Fluorescence Emitter Based on Ladderâ€Thiaborin Exhibiting Narrowband Skyâ€Blue Emission with Accelerated Reverse Intersystem Crossing. Angewandte Chemie - International Edition, 2021, 60, 20280-20285.	13.8	144
15	Fusedâ€Nonacyclic Multiâ€Resonance Delayed Fluorescence Emitter Based on Ladderâ€Thiaborin Exhibiting Narrowband Skyâ€Blue Emission with Accelerated Reverse Intersystem Crossing. Angewandte Chemie, 2021, 133, 20442-20447.	2.0	41
16	Deepâ€Blue OLEDs Based on Organoboron–Phenazasilineâ€Hybrid Delayed Fluorescence Emitters Concurrently Achieving 30% External Quantum Efficiency and Small Efficiency Rollâ€Off. Advanced Optical Materials, 2021, 9, 2101282.	7.3	32
17	Wideâ€Range Color Tuning of Narrowband Emission in Multiâ€resonance Organoboron Delayed Fluorescence Materials through Rational Imine/Amine Functionalization. Angewandte Chemie, 2021, 133, 23326-23331.	2.0	35
18	Wideâ€Range Color Tuning of Narrowband Emission in Multiâ€resonance Organoboron Delayed Fluorescence Materials through Rational Imine/Amine Functionalization. Angewandte Chemie - International Edition, 2021, 60, 23142-23147.	13.8	156

#	Article	IF	CITATIONS
19	An S-shaped thienoacene semiconductor forming unique cruciform lamellar packing ⟨i>via⟨ i> a 2D interaction network of Ï€-stacking and chalcogen bonding. Journal of Materials Chemistry C, 2021, 9, 13090-13093.	5.5	3
20	Uâ€Shaped Heteroacenes Embedded with Heavy Chalcogen Atoms: Unique Bilayer Selfâ€Organization of Crooked Ï€â€Cores Enabling Efficient Charge Transport. Advanced Electronic Materials, 2021, 7, 2001052.	5.1	7
21	A liquid-crystalline semiconducting polymer based on thienylene–vinylene–thienylene: Enhanced hole mobilities by mesomorphic molecular ordering and thermoplastic shape-deformable characteristics. Polymer Journal, 2020, 52, 313-321.	2.7	7
22	Dipolar and Quadrupolar Luminophores Based on 1,8â€Dimethylcarbazoleâ^Triazine Conjugates for Highâ€Efficiency Blue Thermally Activated Delayed Fluorescence OLEDs. ChemPhotoChem, 2020, 4, 82-88.	3.0	8
23	Pentacyclic Ladder-Heteraborin Emitters Exhibiting High-Efficiency Blue Thermally Activated Delayed Fluorescence with an Ultrashort Emission Lifetime. , 2020, 2, 28-34.		61
24	Full-Color, Narrowband, and High-Efficiency Electroluminescence from Boron and Carbazole Embedded Polycyclic Heteroaromatics. Journal of the American Chemical Society, 2020, 142, 19468-19472.	13.7	449
25	Mechanochromic Delayed Fluorescence Switching in Propellerâ€Shaped Carbazole–Isophthalonitrile Luminogens with Stimuliâ€Responsive Intramolecular Chargeâ€Transfer Excited States. Angewandte Chemie - International Edition, 2020, 59, 13955-13961.	13.8	64
26	Mechanochromic Delayed Fluorescence Switching in Propellerâ€Shaped Carbazole–Isophthalonitrile Luminogens with Stimuliâ€Responsive Intramolecular Chargeâ€Transfer Excited States. Angewandte Chemie, 2020, 132, 14059-14065.	2.0	15
27	Near-infrared absorbing pyrrolopyrrole aza-BODIPY-based donor–acceptor polymers with reasonable photoresponse. Journal of Materials Chemistry C, 2020, 8, 8770-8776.	5.5	19
28	Solution-Processable Organic Semiconductors Featuring S-Shaped Dinaphthothienothiophene (S-DNTT): Effects of Alkyl Chain Length on Self-Organization and Carrier Transport Properties. Chemistry of Materials, 2020, 32, 5350-5360.	6.7	33
29	White-light emission from a pyrimidine–carbazole conjugate with tunable phosphorescence–fluorescence dual emission and multicolor emission switching. Chemical Communications, 2020, 56, 4051-4054.	4.1	22
30	An Isonicotinonitrile-based Blue Thermally Activated Delayed Fluorescence Emitter. Chemistry Letters, 2020, 49, 210-213.	1.3	0
31	Rational design of pyrrolopyrrole-aza-BODIPY-based acceptor–donor–acceptor triads for organic photovoltaics application. Chemical Communications, 2020, 56, 2975-2978.	4.1	35
32	Organic energy-harvesting devices achieving power conversion efficiencies over 20% under ambient indoor lighting. Journal of Materials Chemistry A, 2019, 7, 20187-20192.	10.3	49
33	Synthesis of Anthracene Derivatives with Azaaceneâ€Containing Iptycene Wings and the Utilization as a Dopant for Solutionâ€Processed Organic Lightâ€Emitting Diodes. Chemistry - A European Journal, 2019, 25, 15565-15571.	3.3	6
34	Strategic end-halogenation of π-conjugated small molecules enabling fine morphological control and enhanced performance of organic solar cells. Journal of Materials Chemistry A, 2019, 7, 14806-14815.	10.3	21
35	Mechanochromic fluorescence based on a combination of acceptor and bulky donor moieties: tuning emission color and regulating emission change direction. New Journal of Chemistry, 2019, 43, 4998-5010.	2.8	28
36	High-Performance Organic Energy-Harvesting Devices and Modules for Self-Sustainable Power Generation under Ambient Indoor Lighting Environments. ACS Applied Materials & Samp; Interfaces, 2019, 11, 9259-9264.	8.0	71

#	Article	IF	CITATIONS
37	Boronate- and borinate-based Ï∈-systems for blue thermally activated delayed fluorescence materials. Chemical Communications, 2019, 55, 2501-2504.	4.1	38
38	Blue thermally activated delayed fluorescence emitters incorporating acridan analogues with heavy group 14 elements for high-efficiency doped and non-doped OLEDs. Chemical Science, 2019, 10, 10687-10697.	7.4	99
39	Highly Efficient Red–Orange Delayed Fluorescence Emitters Based on Strong Ï€â€Accepting Dibenzophenazine and Dibenzoquinoxaline Cores: toward a Rational Pureâ€Red OLED Design. Advanced Optical Materials, 2018, 6, 1701147.	7.3	169
40	Molecular engineering of phosphacycle-based thermally activated delayed fluorescence materials for deep-blue OLEDs. Journal of Materials Chemistry C, 2018, 6, 3578-3583.	5.5	32
41	Oligothiophene–Indandione-Linked Narrow-Band Gap Molecules: Impact of π-Conjugated Chain Length on Photovoltaic Performance. ACS Applied Materials & Interfaces, 2018, 10, 11083-11093.	8.0	21
42	Highâ€Mobility Regioisomeric Thieno[<i>f</i> , <i>f</i> à6€²]bis[1]benzothiophenes: Remarkable Effect of <i>Syn</i> /i>Anti Thiophene Configuration on Optoelectronic Properties, Selfâ€Organization, and Chargeâ€Transport Functions in Organic Transistors. Advanced Electronic Materials, 2018, 4, 1700390.	5.1	18
43	High-Crystallinity π-Conjugated Small Molecules Based on Thienylene–Vinylene–Thienylene: Critical Role of Self-Organization in Photovoltaic, Charge-Transport, and Morphological Properties. ACS Applied Materials & Interfaces, 2018, 10, 42756-42765.	8.0	8
44	Highâ€Performance Dibenzoheteraborinâ€Based Thermally Activated Delayed Fluorescence Emitters: Molecular Architectonics for Concurrently Achieving Narrowband Emission and Efficient Triplet–Singlet Spin Conversion. Advanced Functional Materials, 2018, 28, 1802031.	14.9	264
45	Modulating Photo―and Electroluminescence in a Stimuliâ€Responsive π onjugated Donor–Acceptor Molecular System. Angewandte Chemie, 2018, 130, 12158-12162.	2.0	22
46	Modulating Photo―and Electroluminescence in a Stimuliâ€Responsive Ï€â€Conjugated Donor–Acceptor Molecular System. Angewandte Chemie - International Edition, 2018, 57, 11982-11986.	13.8	60
47	Tunable Full-Color Electroluminescence from All-Organic Optical Upconversion Devices by Near-Infrared Sensing. ACS Photonics, 2017, 4, 223-227.	6.6	61
48	Tetrathienoanthracene-based ¨i€-Extended Narrow-band-gap Molecules: Synthesis, Physicochemical, and Photovoltaic Properties. Chemistry Letters, 2017, 46, 29-31.	1.3	2
49	Thermally Activated Delayed Fluorescence Properties of Regioisomeric Xanthone-Based Twisted Intramolecular Charge-Transfer Luminophores. Bulletin of the Chemical Society of Japan, 2017, 90, 231-236.	3.2	14
50	Solution-grown unidirectionally oriented crystalline thin films of a U-shaped thienoacene-based semiconductor for high-performance organic field-effect transistors. Journal of Materials Chemistry C, 2017, 5, 5872-5876.	5.5	17
51	Effects of chalcogen atom substitution on the optoelectronic and charge-transport properties in picene-type π-systems. Chemical Communications, 2017, 53, 3814-3817.	4.1	34
52	Cyclohexane-Coupled Bipolar Host Materials with High Triplet Energies for Organic Light-Emitting Diodes Based on Thermally Activated Delayed Fluorescence. ACS Applied Materials & Interfaces, 2017, 9, 2693-2700.	8.0	29
53	Isobenzofuranone- and Chromone-Based Blue Delayed Fluorescence Emitters with Low Efficiency Roll-Off in Organic Light-Emitting Diodes. Chemistry of Materials, 2017, 29, 8012-8020.	6.7	68
54	Spin-Dependent Exciton Funneling to a Dendritic Fluorophore Mediated by a Thermally Activated Delayed Fluorescence Material as an Exciton-Harvesting Host. Chemistry of Materials, 2017, 29, 7014-7022.	6.7	53

#	Article	IF	CITATIONS
55	Ï€-conjugated naphthodithiophene homopolymers bearing alkyl/alkylthio-thienyl substituents: facile synthesis using hexamethylditin and their charge-transport and photovoltaic properties. Polymer Journal, 2017, 49, 729-734.	2.7	0
56	Enhancing thermally activated delayed fluorescence characteristics by intramolecular B–N coordination in a phenylpyridine-containing donor–acceptor π-system. Chemical Communications, 2017, 53, 8723-8726.	4.1	56
57	Versatile Molecular Functionalization for Inhibiting Concentration Quenching of Thermally Activated Delayed Fluorescence. Advanced Materials, 2017, 29, 1604856.	21.0	251
58	Pyrimidine-based twisted donor–acceptor delayed fluorescence molecules: a new universal platform for highly efficient blue electroluminescence. Chemical Science, 2017, 8, 953-960.	7.4	140
59	Aggregation-induced delayed fluorescence from phenothiazine-containing donor–acceptor molecules for high-efficiency non-doped organic light-emitting diodes. Polymer Journal, 2017, 49, 197-202.	2.7	61
60	Star-shaped and linear π-conjugated oligomers consisting of a tetrathienoanthracene core and multiple diketopyrrolopyrrole arms for organic solar cells. Beilstein Journal of Organic Chemistry, 2016, 12, 1459-1466.	2.2	6
61	High-performance blue organic light-emitting diodes with 20% external electroluminescence quantum efficiency based on pyrimidine-containing thermally activated delayed fluorescence emitters. Journal of Materials Chemistry C, 2016, 4, 7911-7916.	5.5	71
62	Fullâ€Color Delayed Fluorescence Materials Based on Wedgeâ€Shaped Phthalonitriles and Dicyanopyrazines: Systematic Design, Tunable Photophysical Properties, and OLED Performance. Advanced Functional Materials, 2016, 26, 1813-1821.	14.9	236
63	Thermally Activated Delayed Fluorescence Polymers for Efficient Solutionâ€Processed Organic Lightâ€Emitting Diodes. Advanced Materials, 2016, 28, 4019-4024.	21.0	251
64	Aggregationâ€Induced Delayed Fluorescence Based on Donor/Acceptorâ€Tethered Janus Carborane Triads: Unique Photophysical Properties of Nondoped OLEDs. Angewandte Chemie - International Edition, 2016, 55, 7171-7175.	13.8	381
65	Blue Oleds: High-Efficiency Blue Organic Light-Emitting Diodes Based on Thermally Activated Delayed Fluorescence from Phenoxaphosphine and Phenoxathiin Derivatives (Adv. Mater. 23/2016). Advanced Materials, 2016, 28, 4625-4625.	21.0	5
66	Controlling Open-Circuit Voltage in Organic Solar Cells by Terminal Fluoro-Functionalization of Narrow-Bandgap π-Conjugated Molecules. Journal of Physical Chemistry C, 2016, 120, 21235-21241.	3.1	16
67	A Phenazaborin-Based High-Efficiency Blue Delayed Fluorescence Material. Bulletin of the Chemical Society of Japan, 2016, 89, 375-377.	3.2	60
68	Highâ€Efficiency Blue Organic Lightâ€Emitting Diodes Based on Thermally Activated Delayed Fluorescence from Phenoxaphosphine and Phenoxathiin Derivatives. Advanced Materials, 2016, 28, 4626-4631.	21.0	179
69	Photon-absorbing charge-bridging states in organic bulk heterojunctions consisting of diketopyrrolopyrrole derivatives and PCBM. Physical Chemistry Chemical Physics, 2016, 18, 9514-9523.	2.8	8
70	Controlled emission colors and singlet–triplet energy gaps of dihydrophenazine-based thermally activated delayed fluorescence emitters. Journal of Materials Chemistry C, 2015, 3, 2175-2181.	5. 5	147
71	Nearly 100% Internal Quantum Efficiency in Undoped Electroluminescent Devices Employing Pure Organic Emitters. Advanced Materials, 2015, 27, 2096-2100.	21.0	495
72	X-shaped benzoylbenzophenone derivatives with crossed donors and acceptors for highly efficient thermally activated delayed fluorescence. Dalton Transactions, 2015, 44, 8356-8359.	3.3	64

#	Article	IF	CITATIONS
73	Organic Light-emitting Diodes Based on Donor-substituted Phthalimide and Maleimide Fluorophores. Chemistry Letters, 2015, 44, 1248-1250.	1.3	29
74	Highly efficient electroluminescence from purely organic donor–acceptor systems. Pure and Applied Chemistry, 2015, 87, 627-638.	1.9	45
75	High efficiency pure blue thermally activated delayed fluorescence molecules having 10H-phenoxaborin and acridan units. Chemical Communications, 2015, 51, 9443-9446.	4.1	299
76	Tetraphenyldibenzoperiflanthene as sensitizer for enhancing the performance in dinaphthothienothiophene-based photovoltaics with and without fullerene. Synthetic Metals, 2015, 205, 121-126.	3.9	12
77	Organic Light-Emitting Diodes (OLEDs): Materials, Photophysics, and Device Physics., 2015, , 43-73.		5
78	Luminous Butterflies: Efficient Exciton Harvesting by Benzophenone Derivatives for Fullâ€Color Delayed Fluorescence OLEDs. Angewandte Chemie - International Edition, 2014, 53, 6402-6406.	13.8	473
79	High-efficiency organic light-emitting diodes with fluorescent emitters. Nature Communications, 2014, 5, 4016.	12.8	869
80	Polymorphism in 9,9-diarylfluorene-based organic semiconductors: influence on optoelectronic functions. Chemical Communications, 2014, 50, 1523-1526.	4.1	26
81	Light-emitting organic field-effect transistors based on highly luminescent single crystals of thiophene/phenylene co-oligomers. Journal of Materials Chemistry C, 2014, 2, 4918.	5.5	65
82	A six-carbazole-decorated cyclophosphazene as a host with high triplet energy to realize efficient delayed-fluorescence OLEDs. Materials Horizons, 2014, 1, 264-269.	12.2	150
83	Ï€ â€Extended Narrowâ€Bandgap Diketopyrrolopyrroleâ€Based Oligomers for Solutionâ€Processed Inverted Organic Solar Cells. Advanced Energy Materials, 2014, 4, 1400879.	19.5	47
84	Donor–acceptor-structured 1,4-diazatriphenylene derivatives exhibiting thermally activated delayed fluorescence: design and synthesis, photophysical properties and OLED characteristics. Science and Technology of Advanced Materials, 2014, 15, 034202.	6.1	67
85	Efficiency Enhancement of Organic Lightâ€Emitting Diodes Incorporating a Highly Oriented Thermally Activated Delayed Fluorescence Emitter. Advanced Functional Materials, 2014, 24, 5232-5239.	14.9	159
86	Self-assembly, Physicochemical, and Field-effect Transistor Properties of Solution-crystallized Organic Semiconductors Based on Ï€-Extended Dithieno[3,2-⟨i⟩b⟨/i⟩:2′,3′-⟨i⟩d⟨/i⟩]thiophenes. Chemistry Letters, 2014, 43, 293-295.	1.3	10
87	Thermally Activated Delayed Fluorescence from a Spiro-diazafluorene Derivative. Chemistry Letters, 2014, 43, 1017-1019.	1.3	62
88	High performance organic field-effect transistors based on single-crystal microribbons and microsheets of solution-processed dithieno $[3,2-b:2\hat{a}\in^2,3\hat{a}\in^2-d]$ thiophene derivatives. Chemical Communications, 2013, 49, 6483.	4.1	60
89	Effects of Intramolecular Donor–Acceptor Interactions on Bimolecular Recombination in Small-Molecule Organic Photovoltaic Cells. Journal of Physical Chemistry C, 2013, 117, 4986-4991.	3.1	17
90	A highly luminescent spiro-anthracenone-based organic light-emitting diode exhibiting thermally activated delayed fluorescence. Chemical Communications, 2013, 49, 10385-10387.	4.1	198

#	Article	IF	CITATIONS
91	Oxadiazole- and triazole-based highly-efficient thermally activated delayed fluorescence emitters for organic light-emitting diodes. Journal of Materials Chemistry C, 2013, 1, 4599.	5.5	304
92	A host material consisting of a phosphinic amide directly linked donor–acceptor structure for efficient blue phosphorescent organic light-emitting diodes. Journal of Materials Chemistry C, 2013, 1, 2404.	5.5	56
93	Bifunctional Starâ€Burst Amorphous Molecular Materials for OLEDs: Achieving Highly Efficient Solidâ€State Luminescence and Carrier Transport Induced by Spontaneous Molecular Orientation. Advanced Materials, 2013, 25, 2666-2671.	21.0	92
94	Self-Organizing Mesomorphic Diketopyrrolopyrrole Derivatives for Efficient Solution-Processed Organic Solar Cells. Chemistry of Materials, 2013, 25, 2549-2556.	6.7	126
95	Triphenylene-based Host Materials for Low-voltage, Highly Efficient Red Phosphorescent Organic Light-emitting Diodes. Chemistry Letters, 2013, 42, 383-385.	1.3	9
96	Molecular Design of High-molecular-orientation Electron-transport Materials and Application to Organic Light-emitting Diodes. Chemistry Letters, 2013, 42, 651-653.	1.3	6
97	High-efficiency organic light-emitting diodes utilizing thermally activated delayed fluorescence from triazine-based donor–acceptor hybrid molecules. Applied Physics Letters, 2012, 101, 093306.	3.3	311
98	Organic Single-Crystal Transistors Based on π-Extended Heteroheptacene Microribbons. Bulletin of the Chemical Society of Japan, 2012, 85, 1186-1191.	3.2	17
99	Efficient luminescence from a copper(i) complex doped in organic light-emitting diodes by suppressing C–H vibrational quenching. Chemical Communications, 2012, 48, 5340.	4.1	92
100	Liquidâ€Crystalline Catenanes and Rotaxanes. Israel Journal of Chemistry, 2012, 52, 854-862.	2.3	19
101	Highly luminescent π-conjugated dithienometalloles: photophysical properties and their application in organic light-emitting diodes. Journal of Materials Chemistry, 2012, 22, 16810.	6.7	40
102	Low driving voltage characteristics of triphenylene derivatives as electron transport materials in organic light-emitting diodes. Journal of Materials Chemistry, 2012, 22, 20689.	6.7	97
103	Electro-Functional Octupolar π-Conjugated Columnar Liquid Crystals. Journal of the American Chemical Society, 2011, 133, 13437-13444.	13.7	180
104	Horizontal Orientation of a Linear-Shaped Platinum(II) Complex in Organic Light-Emitting Diodes with a High Light Out-Coupling Efficiency. Applied Physics Express, 2011, 4, 071602.	2.4	25
105	A redox-switchable [2]rotaxane in a liquid-crystalline state. Chemical Communications, 2010, 46, 1224.	4.1	84
106	Alignment of photoconductive self-assembled fibers composed of π-conjugated molecules under electric fields. Journal of Materials Chemistry, 2010, 20, 173-179.	6.7	34
107	Functional Soft Materials: Nanostructured Liquid Crystals and Self-Assembled Fibrous Aggregates. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2010, 68, 1169-1174.	0.1	9
108	Macrocycle-Based Liquid Crystals: A Study of Topological Effects on Mesomorphism. Molecular Crystals and Liquid Crystals, 2009, 509, 165/[907]-172/[914].	0.9	11

#	Article	IF	CITATIONS
109	Supramolecular structure of columnar liquid crystalline π-conjugated oligothiophenes with highly polarized photoluminescence properties. Journal of Applied Physics, 2009, 105, .	2.5	4
110	<i><i><i><i><i><i><i><i><ii><i><ii><ii></ii></ii></i></ii></i></i></i></i></i></i></i></i>	14.9	212
111	Anisotropic Selfâ€Assembly of Photoluminescent Oligo(<i>p</i> â€Phenylenevinylene) Derivatives in Liquid Crystals: An Effective Strategy for the Macroscopic Alignment of <i>Ï€</i> â€Gels. Advanced Materials, 2009, 21, 4029-4033.	21.0	56
112	Truxeneâ€Based Columnar Liquid Crystals: Selfâ€Assembled Structures and Electroâ€Active Properties. Chemistry - an Asian Journal, 2009, 4, 1619-1625.	3.3	43
113	Self-assembly of functional columnar liquid crystals. Chemical Communications, 2009, , 729.	4.1	299
114	A layered liquid crystalline droplet. Journal of Materials Chemistry, 2009, 19, 3469.	6.7	8
115	Photoluminescent Liquid Crystals Based on Trithienylphosphine Oxides. Chemistry Letters, 2009, 38, 800-801.	1.3	14
116	Luminescent π-conjugated poly(aryleneethynylene)s consisting of plural aromatic units: Preparation and systematic studies on their optical properties. Reactive and Functional Polymers, 2008, 68, 1483-1491.	4.1	13
117	Photosensitized Near-Infrared Luminescence of Yb(III) Complexes Containing Phenanthroline Derivatives. Japanese Journal of Applied Physics, 2008, 47, 1192-1195.	1.5	8
118	Dipole-driven self-assembly of redox-active mesogenic tetracyanoanthraquinodimethanes. Journal of Materials Chemistry, 2008, $18,4522$.	6.7	33
119	Luminescent Ionic Liquid Crystals Based on Tripodal Pyridinium Salts. Chemistry Letters, 2008, 37, 1208-1209.	1.3	32
120	Clicked Interlocked Molecules. Bulletin of the Chemical Society of Japan, 2007, 80, 1856-1869.	3.2	119
121	Viologen-Based Redox-Active Ionic Liquid Crystals Forming Columnar Phases. Organic Letters, 2007, 9, 4271-4274.	4.6	83
122	A Liquid-Crystalline Bistable [2]Rotaxane. Angewandte Chemie - International Edition, 2007, 46, 4675-4679.	13.8	172
123	A Liquid-Crystalline [2]Catenane and Its Copper(I) Complex. Angewandte Chemie - International Edition, 2007, 46, 4680-4683.	13.8	93
124	New luminescent 1,2,4-triazole/thiophene alternating copolymers: Synthesis, characterization, and optical properties. Polymer, 2007, 48, 4375-4384.	3.8	23
125	Columnar liquid crystalline π-conjugated oligothiophenes. Chemical Communications, 2006, , 3399-3401.	4.1	76
126	Oligothiophene-based Liquid Crystals Exhibiting Smectic A Phases in Wider Temperature Ranges. Chemistry Letters, 2006, 35, 1150-1151.	1.3	30

#	Article	IF	CITATIONS
127	Utilization of Industrially Available 2,3-Dichloro-1,3-butadiene for Direct Synthesis of 2,3-Diaryl-1,3-butadienes. Bulletin of the Chemical Society of Japan, 2006, 79, 498-500.	3.2	12
128	Ambipolar Field-Effect Transistor (FET) and Redox Characteristics of aπ-Conjugated Thiophene/1,3,4-Thiadiazole CT-Type Copolymer. Macromolecular Rapid Communications, 2005, 26, 1214-1217.	3.9	69
129	New Coplanar (ABA)n-Type Donorâ^'Acceptor Ï€-Conjugated Copolymers Constituted of Alkylthiophene (Unit A) and Pyridazine (Unit B):  Synthesis Using Hexamethylditin, Self-Organized Solid Structure, and Optical and Electrochemical Properties of the Copolymers. Chemistry of Materials, 2005, 17, 6060-6068.	6.7	122
130	Transfer of Photoenergy in π-Conjugated Polymers. Two Types of Photoluminescence that Involve Energy Transfer along a Polymer Chain. Journal of Physical Chemistry B, 2005, 109, 10605-10610.	2.6	12
131	Synthesis, Characterization, and Optical and Electrochemical Properties of New 2,1,3-Benzoselenadiazole-Based CT-Type Copolymers. Macromolecules, 2005, 38, 7378-7385.	4.8	66
132	Synthesis, Solid Structure, and Optical Properties of New Thiophene-Based Alternating π-Conjugated Copolymers Containing 4-Alkyl-1,2,4-triazole or 1,3,4-Thiadiazole Unit as the Partner Unit. Macromolecules, 2005, 38, 1500-1503.	4.8	51
133	New Alternative Donorâ^'Acceptor Arranged Poly(Aryleneethynylene)s and Their Related Compounds Composed of Five-Membered Electron-Accepting 1,3,4-Thiadiazole, 1,2,4-Triazole, or 3,4-Dinitrothiophene Units:Â Synthesis, Packing Structure, and Optical Properties. Macromolecules, 2005, 38, 4687-4697.	4.8	85
134	Preparation of Polyacetylenes via Organometallic C-C Coupling Reactions. Polymer Bulletin, 2004, 52, 315-319.	3.3	20
135	Synthesis and Characterization of New Luminescent 1,10-Phenanthroline- and Pyridine-Containing π-Conjugated Polymers. Their Optical Response to Protic Acid, Mn+, and Solvents. Macromolecules, 2003, 36, 7513-7519.	4.8	95
136	A New Soluble 1,10-Phenanthroline-Containing π-Conjugated Polymer: Synthesis and Effect of Metal Complexation on Optical Properties. Advanced Materials, 2003, 15, 293-296.	21.0	102
137	Poly(1,10-phenanthroline-3,8-diyl) and Its Derivatives. Preparation, Optical and Electrochemical Properties, Solid Structure, and Their Metal Complexes. Macromolecules, 2003, 36, 6722-6729.	4.8	55
138	Preparation of N-grafted polyanilines utilizing ring-opening copolymerization of epoxide. Synthetic Metals, 2003, 139, 35-38.	3.9	5
139	Preparation of N-grafted polyanilines with oligoether side chains by using ring-opening graft copolymerization of epoxide, and their optical, electrochemical and thermal properties and ionic conductivity. Journal of Materials Chemistry, 2003, 13, 2138.	6.7	16
140	Ring-opening graft copolymerization of epoxide with polyaniline: Chemical properties and lithium ionic conductivity of the copolymer. Journal of Polymer Science Part A, 2001, 39, 3137-3142.	2.3	13
141	Thermotropic liquid-crystalline folic acid derivatives: supramolecular discotic and smectic aggregation. Chemical Communications, 2000, , 1899-1900.	4.1	54
142	PAEs with Heteroaromatic Rings. Advances in Polymer Science, 0, , 181-208.	0.8	19