## List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7940438/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                 | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Ultrathin SnSe <sub>2</sub> Flakes Grown by Chemical Vapor Deposition for Highâ€Performance<br>Photodetectors. Advanced Materials, 2015, 27, 8035-8041.                                                                 | 21.0 | 460       |
| 2  | Two-dimensional layered nanomaterials for gas-sensing applications. Inorganic Chemistry Frontiers, 2016, 3, 433-451.                                                                                                    | 6.0  | 306       |
| 3  | Largeâ€Size Growth of Ultrathin SnS <sub>2</sub> Nanosheets and High Performance for Phototransistors. Advanced Functional Materials, 2016, 26, 4405-4413.                                                              | 14.9 | 279       |
| 4  | Photonic Potentiation and Electric Habituation in Ultrathin Memristive Synapses Based on Monolayer<br>MoS <sub>2</sub> . Small, 2018, 14, e1800079.                                                                     | 10.0 | 224       |
| 5  | Turning off Hydrogen To Realize Seeded Growth of Subcentimeter Single-Crystal Graphene Grains on<br>Copper. ACS Nano, 2013, 7, 9480-9488.                                                                               | 14.6 | 219       |
| 6  | Chemical Vapor Deposition Synthesis of Ultrathin Hexagonal ReSe <sub>2</sub> Flakes for Anisotropic<br>Raman Property and Optoelectronic Application. Advanced Materials, 2016, 28, 8296-8301.                          | 21.0 | 206       |
| 7  | Largeâ€Area Bilayer ReS <sub>2</sub> Film/Multilayer ReS <sub>2</sub> Flakes Synthesized by Chemical<br>Vapor Deposition for High Performance Photodetectors. Advanced Functional Materials, 2016, 26,<br>4551-4560.    | 14.9 | 199       |
| 8  | Controlled Synthesis of Ultrathin 2D βâ€In <sub>2</sub> S <sub>3</sub> with Broadband Photoresponse<br>by Chemical Vapor Deposition. Advanced Functional Materials, 2017, 27, 1702448.                                  | 14.9 | 194       |
| 9  | Vertical heterostructures based on SnSe <sub>2</sub> /MoS <sub>2</sub> for high performance photodetectors. 2D Materials, 2017, 4, 025048.                                                                              | 4.4  | 183       |
| 10 | Van der Waals Coupled Organic Molecules with Monolayer MoS <sub>2</sub> for Fast Response<br>Photodetectors with Gate-Tunable Responsivity. ACS Nano, 2018, 12, 4062-4073.                                              | 14.6 | 183       |
| 11 | A Fully Transparent and Flexible Ultraviolet–Visible Photodetector Based on Controlled Electrospun<br>ZnO dO Heterojunction Nanofiber Arrays. Advanced Functional Materials, 2015, 25, 5885-5894.                       | 14.9 | 181       |
| 12 | Booming Development of Group IV–VI Semiconductors: Fresh Blood of 2D Family. Advanced Science,<br>2016, 3, 1600177.                                                                                                     | 11.2 | 181       |
| 13 | Layered phosphorus-like GeP <sub>5</sub> : a promising anode candidate with high initial coulombic<br>efficiency and large capacity for lithium ion batteries. Energy and Environmental Science, 2015, 8,<br>3629-3636. | 30.8 | 179       |
| 14 | Understanding Charge Transfer at PbSâ€Decorated Graphene Surfaces toward a Tunable Photosensor.<br>Advanced Materials, 2012, 24, 2715-2720.                                                                             | 21.0 | 177       |
| 15 | 2D layered group IIIA metal chalcogenides: synthesis, properties and applications in electronics and optoelectronics. CrystEngComm, 2016, 18, 3968-3984.                                                                | 2.6  | 171       |
| 16 | High—Performance Solarâ€Blind Deep Ultraviolet Photodetector Based on Individual Singleâ€Crystalline<br>Zn <sub>2</sub> GeO <sub>4</sub> Nanowire. Advanced Functional Materials, 2016, 26, 704-712.                    | 14.9 | 163       |
| 17 | An Enhanced UV–Vis–NIR an d Flexible Photodetector Based on Electrospun ZnO Nanowire Array/PbS<br>Quantum Dots Film Heterostructure. Advanced Science, 2017, 4, 1600316.                                                | 11.2 | 160       |
| 18 | Building Highâ€Throughput Molecular Junctions Using Indented Graphene Point Contacts. Angewandte<br>Chemie - International Edition, 2012, 51, 12228-12232.                                                              | 13.8 | 157       |

| #  | Article                                                                                                                                                                                                                                        | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Decorating Perovskite Quantum Dots in TiO <sub>2</sub> Nanotubes Array for Broadband Response<br>Photodetector. Advanced Functional Materials, 2017, 27, 1703115.                                                                              | 14.9 | 142       |
| 20 | Direct Optical Characterization of Graphene Growth and Domains on Growth Substrates. Scientific Reports, 2012, 2, 707.                                                                                                                         | 3.3  | 137       |
| 21 | Spaceâ€Confined Chemical Vapor Deposition Synthesis of Ultrathin HfS <sub>2</sub> Flakes for Optoelectronic Application. Advanced Functional Materials, 2017, 27, 1702918.                                                                     | 14.9 | 122       |
| 22 | Self-powered high performance photodetectors based on CdSe nanobelt/graphene Schottky junctions.<br>Journal of Materials Chemistry, 2012, 22, 2863.                                                                                            | 6.7  | 115       |
| 23 | Interlayer Coupling Induced Infrared Response in WS <sub>2</sub> /MoS <sub>2</sub><br>Heterostructures Enhanced by Surface Plasmon Resonance. Advanced Functional Materials, 2018, 28,<br>1800339.                                             | 14.9 | 114       |
| 24 | High performance near-infrared photodetectors based on ultrathin SnS nanobelts grown via physical vapor deposition. Journal of Materials Chemistry C, 2016, 4, 2111-2116.                                                                      | 5.5  | 113       |
| 25 | Ternary Ta <sub>2</sub> NiSe <sub>5</sub> Flakes for a Highâ€Performance Infrared Photodetector.<br>Advanced Functional Materials, 2016, 26, 8281-8289.                                                                                        | 14.9 | 112       |
| 26 | CVD Growth of Large Area Smooth-edged Graphene Nanomesh by Nanosphere Lithography. Scientific<br>Reports, 2013, 3, 1238.                                                                                                                       | 3.3  | 111       |
| 27 | Ultrathin Nonâ€van der Waals Magnetic Rhombohedral Cr <sub>2</sub> S <sub>3</sub> : Space onfined<br>Chemical Vapor Deposition Synthesis and Raman Scattering Investigation. Advanced Functional<br>Materials, 2019, 29, 1805880.              | 14.9 | 103       |
| 28 | Achieving highly uniform two-dimensional PbI 2 flakes for photodetectors via space confined physical vapor deposition. Science Bulletin, 2017, 62, 1654-1662.                                                                                  | 9.0  | 102       |
| 29 | Highly reversible sodium storage in a GeP <sub>5</sub> /C composite anode with large capacity and low voltage. Journal of Materials Chemistry A, 2017, 5, 4413-4420.                                                                           | 10.3 | 97        |
| 30 | Chemical functionalization of single-walled carbon nanotube field-effect transistors as switches and sensors. Coordination Chemistry Reviews, 2010, 254, 1101-1116.                                                                            | 18.8 | 96        |
| 31 | Stacking-mode confined growth of 2H-MoTe2/MoS2 bilayer heterostructures for UV–vis–IR<br>photodetectors. Nano Energy, 2018, 49, 200-208.                                                                                                       | 16.0 | 96        |
| 32 | Strategies on Phase Control in Transition Metal Dichalcogenides. Advanced Functional Materials,<br>2018, 28, 1802473.                                                                                                                          | 14.9 | 90        |
| 33 | Theoretical Investigation of the Intercalation Chemistry of Lithium/Sodium Ions in Transition Metal Dichalcogenides. Journal of Physical Chemistry C, 2017, 121, 13599-13605.                                                                  | 3.1  | 87        |
| 34 | Pâ€GaSe/Nâ€MoS <sub>2</sub> Vertical Heterostructures Synthesized by van der Waals Epitaxy for<br>Photoresponse Modulation. Small, 2018, 14, 1702731.                                                                                          | 10.0 | 87        |
| 35 | Submillimeter and lead-free Cs <sub>3</sub> Sb <sub>2</sub> Br <sub>9</sub> perovskite nanoflakes:<br>inverse temperature crystallization growth and application for ultrasensitive photodetectors.<br>Nanoscale Horizons, 2019, 4, 1372-1379. | 8.0  | 85        |
| 36 | Generalized Selfâ€Doping Engineering towards Ultrathin and Largeâ€6ized Twoâ€Dimensional Homologous<br>Perovskites. Angewandte Chemie - International Edition, 2017, 56, 14893-14897.                                                          | 13.8 | 81        |

| #  | Article                                                                                                                                                                                                | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Highâ€Performance Langmuir–Blodgett Monolayer Transistors with High Responsivity. Angewandte<br>Chemie - International Edition, 2010, 49, 6319-6323.                                                   | 13.8 | 80        |
| 38 | A simple and scalable graphene patterning method and its application in CdSe nanobelt/graphene<br>Schottky junction solar cells. Nanoscale, 2011, 3, 1477.                                             | 5.6  | 80        |
| 39 | A Ternary Solvent Method for Largeâ€6ized Twoâ€Dimensional Perovskites. Angewandte Chemie -<br>International Edition, 2017, 56, 2390-2394.                                                             | 13.8 | 80        |
| 40 | Ultrathin Singleâ€Crystalline Boron Nanosheets for Enhanced Electroâ€Optical Performances. Advanced<br>Science, 2015, 2, 1500023.                                                                      | 11.2 | 78        |
| 41 | Achieving Uniform Monolayer Transition Metal Dichalcogenides Film on Silicon Wafer via<br>Silanization Treatment: A Typical Study on WS <sub>2</sub> . Advanced Materials, 2017, 29, 1603550.          | 21.0 | 77        |
| 42 | Space-confined vapor deposition synthesis of two dimensional materials. Nano Research, 2018, 11, 2909-2931.                                                                                            | 10.4 | 76        |
| 43 | Scalable production of self-supported WS2/CNFs by electrospinning as the anode for high-performance lithium-ion batteries. Science Bulletin, 2016, 61, 227-235.                                        | 9.0  | 74        |
| 44 | Enhancing the performance of Li <sub>3</sub> VO <sub>4</sub> by combining nanotechnology and surface carbon coating for lithium ion batteries. Journal of Materials Chemistry A, 2015, 3, 11253-11260. | 10.3 | 73        |
| 45 | Nonlayered Two-Dimensional Defective Semiconductor γ-Ga <sub>2</sub> S <sub>3</sub> toward<br>Broadband Photodetection. ACS Nano, 2019, 13, 6297-6307.                                                 | 14.6 | 72        |
| 46 | Photoactive Gate Dielectrics. Advanced Materials, 2010, 22, 3282-3287.                                                                                                                                 | 21.0 | 71        |
| 47 | Ultrasensitive water-processed monolayer photodetectors. Chemical Science, 2011, 2, 796.                                                                                                               | 7.4  | 71        |
| 48 | Generalized Selfâ€Doping Engineering towards Ultrathin and Largeâ€5ized Twoâ€Dimensional Homologous<br>Perovskites. Angewandte Chemie, 2017, 129, 15089-15093.                                         | 2.0  | 65        |
| 49 | Spaceâ€Confined Synthesis of 2D Allâ€Inorganic CsPbl <sub>3</sub> Perovskite Nanosheets for<br>Multiphotonâ€Pumped Lasing. Advanced Optical Materials, 2018, 6, 1800879.                               | 7.3  | 65        |
| 50 | Evolution of the Raman spectrum of graphene grown on copper upon oxidation of the substrate.<br>Nano Research, 2014, 7, 1613-1622.                                                                     | 10.4 | 63        |
| 51 | Self-supported Zn <sub>3</sub> P <sub>2</sub> nanowire arrays grafted on carbon fabrics as an advanced integrated anode for flexible lithium ion batteries. Nanoscale, 2016, 8, 8666-8672.             | 5.6  | 63        |
| 52 | Inversion Symmetry Broken 2D 3Râ€MoTe <sub>2</sub> . Advanced Functional Materials, 2018, 28, 1800785.                                                                                                 | 14.9 | 63        |
| 53 | TiO2-decorated graphenes as efficient photoswitches with high oxygen sensitivity. Chemical Science, 2011, 2, 1860.                                                                                     | 7.4  | 59        |
| 54 | Multicolor graphene nanoribbon/semiconductor nanowire heterojunction light-emitting diodes.<br>Journal of Materials Chemistry, 2011, 21, 11760.                                                        | 6.7  | 58        |

| #  | Article                                                                                                                                                                                   | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Ternary Oxide Nanocrystals: Universal Laserâ€Hydrothermal Synthesis, Optoelectronic and<br>Electrochemical Applications. Advanced Functional Materials, 2016, 26, 5051-5060.              | 14.9 | 58        |
| 56 | Graphene-templated growth of hollow Ni <sub>3</sub> S <sub>2</sub> nanoparticles with enhanced pseudocapacitive performance. Journal of Materials Chemistry A, 2014, 2, 19214-19220.      | 10.3 | 56        |
| 57 | Hierarchical Self-Assembly of Nanowires on the Surface by Metallo-Supramolecular Truncated<br>Cuboctahedra. Journal of the American Chemical Society, 2021, 143, 5826-5835.               | 13.7 | 53        |
| 58 | One-pot synthesis of Zn-doped SnO <sub>2</sub> nanosheet-based hierarchical architectures as a glycol gas sensor and photocatalyst. CrystEngComm, 2015, 17, 4394-4401.                    | 2.6  | 52        |
| 59 | Narrowband spectrally selective near-infrared photodetector based on up-conversion nanoparticles used in a 2D hybrid device. Journal of Materials Chemistry C, 2017, 5, 1591-1595.        | 5.5  | 51        |
| 60 | Rhenium dichalcogenides (ReX <sub>2</sub> , X = S or Se): an emerging class of TMDs family. Materials<br>Chemistry Frontiers, 2017, 1, 1917-1932.                                         | 5.9  | 51        |
| 61 | Detaching graphene from copper substrate by oxidation-assisted water intercalation. Carbon, 2016, 98, 138-143.                                                                            | 10.3 | 49        |
| 62 | Phaseâ€Engineered Synthesis of Ultrathin Hexagonal and Monoclinic GaTe Flakes and Phase Transition<br>Study. Advanced Functional Materials, 2019, 29, 1901012.                            | 14.9 | 39        |
| 63 | Electrochemistry: An Efficient Way to Chemically Modify Individual Monolayers of Graphene. Small, 2012, 8, 1326-1330.                                                                     | 10.0 | 35        |
| 64 | Stacking-Mode-Induced Reactivity Enhancement for Twisted Bilayer Graphene. Chemistry of Materials,<br>2016, 28, 1034-1039.                                                                | 6.7  | 35        |
| 65 | Phaseâ€Engineered Growth of Ultrathin InSe Flakes by Chemical Vapor Deposition for Highâ€Efficiency<br>Second Harmonic Generation. Chemistry - A European Journal, 2018, 24, 15678-15684. | 3.3  | 34        |
| 66 | Solutionâ€Crystallized Organic Semiconductors with High Carrier Mobility and Air Stability. Advanced<br>Materials, 2012, 24, 5576-5580.                                                   | 21.0 | 33        |
| 67 | Electrospun nanowire arrays for electronics and optoelectronics. Science China Materials, 2016, 59, 200-216.                                                                              | 6.3  | 32        |
| 68 | Geometry-induced high performance ultraviolet photodetectors in kinked<br>SnO <sub>2</sub> nanowires. Journal of Materials Chemistry C, 2015, 3, 8300-8306.                               | 5.5  | 31        |
| 69 | Synthesis of Bi <sub>2</sub> S <sub>3</sub> –Au Dumbbell Heteronanostructures with Enhanced<br>Photocatalytic and Photoresponse Properties. Langmuir, 2016, 32, 11639-11645.              | 3.5  | 31        |
| 70 | In situ fabrication and investigation of nanostructures and nanodevices with a microscope. Chemical Society Reviews, 2016, 45, 2694-2713.                                                 | 38.1 | 30        |
| 71 | Temperature Difference Triggering Controlled Growth of Allâ€Inorganic Perovskite Nanowire Arrays in Air. Small, 2018, 14, e1803010.                                                       | 10.0 | 29        |
| 72 | Tuning the graphene work function by uniaxial strain. Applied Physics Letters, 2015, 106, .                                                                                               | 3.3  | 28        |

| #  | Article                                                                                                                                                                                  | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | A Ternary Solvent Method for Large‧ized Twoâ€Dimensional Perovskites. Angewandte Chemie, 2017, 129, 2430-2434.                                                                           | 2.0  | 28        |
| 74 | Strain-sensitive ferromagnetic two-dimensional Cr2Te3. Nano Research, 2022, 15, 1254-1259.                                                                                               | 10.4 | 26        |
| 75 | Wrapping Sb <sub>2</sub> Te <sub>3</sub> with a Graphite Layer toward High Volumetric Energy and Long Cycle Li-Ion Batteries. ACS Applied Materials & Interfaces, 2020, 12, 16264-16275. | 8.0  | 25        |
| 76 | Quasi-one-dimensional graphene superlattices formed on high-index surfaces. Physical Review B, 2014,<br>89, .                                                                            | 3.2  | 22        |
| 77 | Grain size control in the fabrication of large single-crystal bilayer graphene structures. Nanoscale, 2015, 7, 2391-2399.                                                                | 5.6  | 22        |
| 78 | Graphene Amplification by Continued Growth on Seed Edges. Chemistry of Materials, 2014, 26, 4137-4143.                                                                                   | 6.7  | 21        |
| 79 | Understanding the Growth Mechanism of GaN Epitaxial Layers on Mechanically Exfoliated Graphite.<br>Nanoscale Research Letters, 2018, 13, 130.                                            | 5.7  | 21        |
| 80 | Enhancement of MoTe2 near-infrared absorption with gold hollow nanorods for photodetection.<br>Nano Research, 2020, 13, 1636-1643.                                                       | 10.4 | 21        |
| 81 | Geometry dependent photoconductivity of In2S3 kinks synthesized by kinetically controlled thermal deposition. Nano Research, 2016, 9, 3848-3857.                                         | 10.4 | 20        |
| 82 | Interfacial thermal resistance across graphene/Al2O3 and graphene/metal interfaces and post-annealing effects. Carbon, 2017, 123, 18-25.                                                 | 10.3 | 20        |
| 83 | New Approach to Unveiling Individual Atomic Layers of 2D Materials and Their Heterostructures.<br>Chemistry of Materials, 2018, 30, 1718-1728.                                           | 6.7  | 19        |
| 84 | GaN epitaxial layers grown on multilayer graphene by MOCVD. AIP Advances, 2018, 8, .                                                                                                     | 1.3  | 18        |
| 85 | Mirror-Image Photoswitching in a Single Organic Thin-Film Transistor. Journal of Physical Chemistry<br>Letters, 2010, 1, 1269-1276.                                                      | 4.6  | 17        |
| 86 | Tuning the properties of graphene using a reversible gas-phase reaction. NPG Asia Materials, 2012, 4, e31-e31.                                                                           | 7.9  | 16        |
| 87 | Novel optoelectronic devices based on single semiconductor nanowires (nanobelts). Nanoscale<br>Research Letters, 2012, 7, 218.                                                           | 5.7  | 13        |
| 88 | Facilitating Allâ€Inorganic Halide Perovskites Fabrication in Confinedâ€ <b>5</b> pace Deposition. Small Methods,<br>2020, 4, 2000102.                                                   | 8.6  | 13        |
| 89 | Boosting in-plane anisotropy by periodic phase engineering in two-dimensional VO2 single crystals.<br>Fundamental Research, 2022, 2, 456-461.                                            | 3.3  | 11        |
| 90 | The mechanism of the modulation of electronic anisotropy in two-dimensional ReS <sub>2</sub> .<br>Nanoscale, 2020, 12, 8915-8921.                                                        | 5.6  | 10        |

| #   | Article                                                                                                                                                                                                                                         | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Revealing Interfaceâ€Assisted Chargeâ€Transfer Mechanisms by Using Silicon Nanowires as Local Probes.<br>Angewandte Chemie - International Edition, 2013, 52, 3369-3373.                                                                        | 13.8 | 9         |
| 92  | Polar-surface-driven growth of ZnS microsprings with novel optoelectronic properties. NPG Asia<br>Materials, 2015, 7, e213-e213.                                                                                                                | 7.9  | 9         |
| 93  | Towards wafer-size strictly monolayer graphene on copper via cyclic atmospheric chemical vapor deposition. Carbon, 2016, 110, 384-389.                                                                                                          | 10.3 | 9         |
| 94  | <i>In situ</i> formed nanoparticle-assisted growth of large-size single crystalline h-BN on copper.<br>Nanoscale, 2018, 10, 17865-17872.                                                                                                        | 5.6  | 9         |
| 95  | Controlled removal of monolayers for bilayer graphene preparation and visualization. RSC Advances, 2015, 5, 25471-25476.                                                                                                                        | 3.6  | 8         |
| 96  | Photodetectors: Ultrathin SnSe2Flakes Grown by Chemical Vapor Deposition for High-Performance<br>Photodetectors (Adv. Mater. 48/2015). Advanced Materials, 2015, 27, 8119-8119.                                                                 | 21.0 | 6         |
| 97  | Breakdown of self-limiting growth on oxidized copper substrates: a facile method for large-size high-quality bi- and trilayer graphene synthesis. RSC Advances, 2015, 5, 56293-56298.                                                           | 3.6  | 5         |
| 98  | Spread of in-plane anisotropy in CsPbBr <sub>3</sub> /ReS <sub>2</sub> heterostructures by proximity effect. Journal of Materials Chemistry C, 0, , .                                                                                           | 5.5  | 4         |
| 99  | Electrical Characteristics: High-Performance Solar-Blind Deep Ultraviolet Photodetector Based on<br>Individual Single-Crystalline Zn2GeO4Nanowire (Adv. Funct. Mater. 5/2016). Advanced Functional<br>Materials, 2016, 26, 804-804.             | 14.9 | 3         |
| 100 | Photodetectors: Interlayer Coupling Induced Infrared Response in WS <sub>2</sub> /MoS <sub>2</sub><br>Heterostructures Enhanced by Surface Plasmon Resonance (Adv. Funct. Mater. 22/2018). Advanced<br>Functional Materials, 2018, 28, 1870151. | 14.9 | 2         |
| 101 | Organic Semiconductors: Solutionâ€Crystallized Organic Semiconductors with High Carrier Mobility<br>and Air Stability (Adv. Mater. 41/2012). Advanced Materials, 2012, 24, 5518-5518.                                                           | 21.0 | 1         |
|     |                                                                                                                                                                                                                                                 |      |           |

102 Synthesis of large-size graphene by chemical vapor deposition. , 2015, , .

0