
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7940016/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Gene therapy with Pellino-1 improves perfusion and decreases tissue loss in Flk-1 heterozygous mice but fails in MAPKAP Kinase-2 knockout murine hind limb ischemia model. Microvascular Research, 2022, 141, 104311.	1.1	5
2	Protective Effect of Cardiomyocyte-Specific Prolyl-4-Hydroxylase 2 Inhibition on Ischemic Injury in a Mouse MI Model. Journal of the American College of Surgeons, 2022, 235, 240-254.	0.2	5
3	Engineered resveratrol-loaded fibrous scaffolds promotes functional cardiac repair and regeneration through Thioredoxin-1 mediated VEGF pathway. International Journal of Pharmaceutics, 2021, 597, 120236.	2.6	12
4	Heat shock protein A12B gene therapy improves perfusion, promotes neovascularization, and decreases fibrosis in a murine model of hind limb ischemia. Surgery, 2021, 170, 969-977.	1.0	5
5	Deletion of newly described pro-survival molecule Pellino-1 increases oxidative stress, downregulates cIAP2/NF-κB cell survival pathway, reduces angiogenic response, and thereby aggravates tissue function in mouse ischemic models. Basic Research in Cardiology, 2020, 115, 45.	2.5	18
6	Thioredoxin-1 improves the immunometabolic phenotype of antitumor T cells. Journal of Biological Chemistry, 2019, 294, 9198-9212.	1.6	28
7	Evaluation of dermal tissue regeneration using resveratrol loaded fibrous matrix in a preclinical mouse model of full-thickness ischemic wound. International Journal of Pharmaceutics, 2019, 558, 177-186.	2.6	27
8	Thioredoxin-1 confines T cell alloresponse and pathogenicity in graft-versus-host disease. Journal of Clinical Investigation, 2019, 129, 2760-2774.	3.9	28
9	Development of next generation cardiovascular therapeutics through bioâ€assisted nanotechnology. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2018, 106, 2072-2083.	1.6	21
10	Disruption of VEGF Mediated Flkâ€1 Signaling Leads to a Gradual Loss of Vessel Health and CardiacÂFunction During Myocardial Infarction: Potential Therapy With Pellinoâ€1. Journal of the American Heart Association, 2018, 7, e007601.	1.6	21
11	Graphene-based drug delivery systems in tissue engineering and nanomedicine. Canadian Journal of Physiology and Pharmacology, 2018, 96, 869-878.	0.7	26
12	Thioredoxin-1 augments wound healing and promote angiogenesis in a murine ischemic full-thickness wound model. Surgery, 2018, 164, 1077-1086.	1.0	9
13	Increased survivability of ischemic skin flap tissue in Flkâ€1 ^{+/â^'} mice by Pellinoâ€1 intervention. Microcirculation, 2017, 24, e12362.	1.0	15
14	Trimodal rescue of hind limb ischemia with growth factors, cells, and nanocarriers: fundamentals to clinical trials. Canadian Journal of Physiology and Pharmacology, 2017, 95, 1125-1140.	0.7	3
15	Regulation of A-Kinase-Anchoring Protein 12 by Heat Shock Protein A12B to Prevent Ventricular Dysfunction Following Acute Myocardial Infarction in Diabetic Rats. Journal of Cardiovascular Translational Research, 2017, 10, 209-220.	1.1	9
16	Thioredoxin-1 attenuates sepsis-induced cardiomyopathy after cecal ligation and puncture in mice. Journal of Surgical Research, 2017, 220, 68-78.	0.8	25
17	Overexpression of Thioredoxin1 enhances functional recovery in a mouse model of hind limb ischemia. Journal of Surgical Research, 2017, 216, 158-168.	0.8	9
18	Reply to the letter "thioredoxin-1 (Trx1) engineered mesenchymal stem cell therapy is a promising feasible therapeutic approach for myocardial infarction― International Journal of Cardiology, 2016, 207, 277-278.	0.8	0

#	Article	IF	CITATIONS
19	Antioxidants in Longevity and Medicine 2014. Oxidative Medicine and Cellular Longevity, 2015, 2015, 1-3.	1.9	6
20	Deletion of prolyl hydroxylase domain proteins (PHD1, PHD3) stabilizes hypoxia inducible factor-1 alpha, promotes neovascularization, and improves perfusion in a murine model of hind-limb ischemia. Microvascular Research, 2015, 97, 181-188.	1.1	27
21	Thioredoxin-1 (Trx1) engineered mesenchymal stem cell therapy increased pro-angiogenic factors, reduced fibrosis and improved heart function in the infarcted rat myocardium. International Journal of Cardiology, 2015, 201, 517-528.	0.8	51
22	Thioredoxins in cardiovascular disease. Canadian Journal of Physiology and Pharmacology, 2015, 93, 903-911.	0.7	37
23	Protective effects of Phyllanthus emblica against myocardial ischemia-reperfusion injury: the role of PI3-kinase/glycogen synthase kinase 3β/β-catenin pathway. Journal of Physiology and Biochemistry, 2015, 71, 623-633.	1.3	35
24	Editorial: Welcome message from the new Editor-in-Chief. Molecular Biology Reports, 2014, 41, 1-1.	1.0	9
25	Molecular Mechanisms of Action and Therapeutic Uses of Pharmacological Inhibitors of HIF–Prolyl 4-Hydroxylases for Treatment of Ischemic Diseases. Antioxidants and Redox Signaling, 2014, 20, 2631-2665.	2.5	35
26	Targeted Gene Deletion of Prolyl Hydroxylase Domain Protein 3 Triggers Angiogenesis and Preserves Cardiac Function by Stabilizing Hypoxia Inducible Factor 1 Alpha Following Myocardial Infarction. Current Pharmaceutical Design, 2014, 20, 1305-1310.	0.9	19
27	Simvastatin treatment inhibits hypoxia inducible factor 1-alpha-(HIF-1alpha)-prolyl-4-hydroxylase 3 (PHD-3) and increases angiogenesis after myocardial infarction in streptozotocin-induced diabetic rat. International Journal of Cardiology, 2013, 168, 2474-2480.	0.8	26
28	Antioxidants in Longevity and Medicine. Oxidative Medicine and Cellular Longevity, 2013, 2013, 1-3.	1.9	17
29	Special issue on the recent trends in therapeutic advancements of free radical science. Toxicology Mechanisms and Methods, 2012, 22, 321-322.	1.3	0
30	Thioredoxin 1 enhances neovascularization and reduces ventricular remodeling during chronic myocardial infarction: A study using thioredoxin 1 transgenic mice. Journal of Molecular and Cellular Cardiology, 2011, 50, 239-247.	0.9	88
31	Disruption of Hypoxia-Inducible Transcription Factor-Prolyl Hydroxylase Domain-1 (PHD-1 ^{â^'/â^'}) Attenuates <i>Ex Vivo</i> Myocardial Ischemia/Reperfusion Injury Through Hypoxia-Inducible Factor-11± Transcription Factor and Its Target Genes in Mice. Antioxidants and Redox Signaling, 2011, 15, 1789-1797.	2.5	68
32	Genomics Analysis to Demonstrate the Safety and Efficacy of Dietary Antioxidants. , 2010, , 95-125.		0
33	Thioredoxin-1 Gene Therapy Enhances Angiogenic Signaling and Reduces Ventricular Remodeling in Infarcted Myocardium of Diabetic Rats. Circulation, 2010, 121, 1244-1255.	1.6	100
34	Coadministration of Adenoviral Vascular Endothelial Growth Factor and Angiopoietin-1 Enhances Vascularization and Reduces Ventricular Remodeling in the Infarcted Myocardium of Type 1 Diabetic Rats. Diabetes, 2010, 59, 51-60.	0.3	50
35	Thioredoxin-1 Gene Delivery Induces Heme Oxygenase-1 Mediated Myocardial Preservation After Chronic Infarction in Hypertensive Rats. American Journal of Hypertension, 2009, 22, 183-190.	1.0	23
36	Mesenchymal Stem Cell: Present Challenges and Prospective Cellular Cardiomyoplasty Approaches for Myocardial Regeneration. Antioxidants and Redox Signaling, 2009, 11, 1841-1855.	2.5	52

#	Article	IF	CITATIONS
37	Resveratrol: a promising agent in promoting cardioprotection against coronary heart diseaseThis article is one of a selection of papers from the NATO Advanced Research Workshop on Translational Knowledge for Heart Health (published in part 2 of a 2-part Special Issue) Canadian Journal of Physiology and Pharmacology, 2009, 87, 275-286.	0.7	100
38	NV1FGF, a pCOR plasmid-based angiogenic gene therapy for the treatment of intermittent claudication and critical limb ischemia. Current Opinion in Investigational Drugs, 2009, 10, 259-68.	2.3	7
39	White Wine Induced Cardioprotection against Ischemia-Reperfusion Injury Is Mediated by Life Extending Akt/FOXO3a/NFI®B Survival Pathway. Journal of Agricultural and Food Chemistry, 2008, 56, 6733-6739.	2.4	38
40	Adeno-sh-β-Catenin Abolishes Ischemic Preconditioning–Mediated Cardioprotection by Downregulation of Its Target Genes VEGF, Bcl-2, and Survivin in Ischemic Rat Myocardium. Antioxidants and Redox Signaling, 2008, 10, 1475-1484.	2.5	33
41	VEGFR1 (Flt-1+/â~) gene knockout leads to the disruption of VEGF-mediated signaling through the nitric oxide/heme oxygenase pathway in ischemic preconditioned myocardium. Free Radical Biology and Medicine, 2007, 42, 1487-1495.	1.3	37
42	TOCOTRIENOLS IN CARDIOPROTECTION: ROLE OF DIFFERENT ISOMERS. FASEB Journal, 2007, 21, A1112.	0.2	1
43	Role of Akt Signaling in Mitochondrial Survival Pathway Triggered by Hypoxic Preconditioning. The Journal of Kansai Medical University, 2006, 58, 178-185.	0.3	8
44	Angiogenic signal during cardiac repair. Molecular and Cellular Biochemistry, 2004, 264, 13-23.	1.4	13
45	[34] A survival model for the study of myocardial angiogenesis. Methods in Enzymology, 2002, 352, 391-407.	0.4	6
46	Potentiation of angiogenic response by ischemic and hypoxic reconditioning of the heart. Journal of Cellular and Molecular Medicine, 2002, 6, 13-24.	1.6	43
47	Redox signaling in vascular angiogenesis1,2 1Guest Editor: Toshikazu Yoshikawa 2This article is part of a series of reviews on "Vascular Dysfunction and Free Radicals.―The full list of papers may be found on the homepage of the journal Free Radical Biology and Medicine, 2002, 33, 1047-1060.	1.3	257
48	Src tyrosine kinase is the trigger but not the mediator of ischemic preconditioning. American Journal of Physiology - Heart and Circulatory Physiology, 2001, 281, H1066-H1074.	1.5	47
49	Generation of ceramide in murine macrophages infected with Leishmania donovani alters macrophage signaling events and aids intracellular parasitic survival. Molecular and Cellular Biochemistry, 2001, 223, 47-60.	1.4	58
50	JAK/STAT Signaling Is Associated With Cardiac Dysfunction During Ischemia and Reperfusion. Circulation, 2001, 104, 325-329.	1.6	205
51	Effects of Hypoxia/Reoxygenation on Angiogenic Factors and Their Tyrosine Kinase Receptors in the Rat Myocardium. Antioxidants and Redox Signaling, 2001, 3, 89-102.	2.5	16
52	Early effects of hypoxia/reoxygenation on VEGF, ang-1, ang-2 and their receptors in the rat myocardium: implications for myocardial angiogenesis. Molecular and Cellular Biochemistry, 2000, 213, 145-153.	1.4	65
53	Dietary coenzyme Q ₁₀ supplement renders swine hearts resistant to ischemia-reperfusion injury. American Journal of Physiology - Heart and Circulatory Physiology, 2000, 278, H1084-H1090.	1.5	36
54	Targeted Disruption of the Mouse <i>Sod I</i> Gene Makes the Hearts Vulnerable to Ischemic Reperfusion Injury. Circulation Research, 2000, 86, 264-269.	2.0	126

#	Article	IF	CITATIONS
55	Redox Regulation of NF- <i>ΰ</i> B and AP-1 in Ischemic Reperfused Heart. Antioxidants and Redox Signaling, 1999, 1, 317-324.	2.5	29
56	Oxygen Free Radical Signaling in Ischemic Preconditioninga. Annals of the New York Academy of Sciences, 1999, 874, 49-65.	1.8	83
57	Differential Regulation of Apoptosis by Ischemia-Reperfusion and Ischemic Adaptationa. Annals of the New York Academy of Sciences, 1999, 874, 401-411.	1.8	24
58	Regulation of cardiomyocyte apoptosis in ischemic reperfused mouse heart by glutathione peroxidase. Molecular and Cellular Biochemistry, 1999, 196, 13-21.	1.4	67
59	Reactive oxygen species function as second messenger during ischemic preconditioning of heart. Molecular and Cellular Biochemistry, 1999, 196, 59-67.	1.4	137
60	Differential regulation of Bcl-2, AP-1 and NF-κB on cardiomyocyte apoptosis during myocardial ischemic stress adaptation. FEBS Letters, 1999, 443, 331-336.	1.3	103
61	Ischemic preconditioning attenuates apoptotic cell death associated with ischemia/reperfusion. Molecular and Cellular Biochemistry, 1998, 186, 139-145.	1.4	76
62	Signal Transduction Pathway Leading to Hsp27 and Hsp70 Gene Expression during Myocardial Adaptation to Stressa. Annals of the New York Academy of Sciences, 1998, 851, 129-138.	1.8	5
63	Coordinated Role of Vasoactive Intestinal Peptide and Nitric Oxide in Cardioprotectiona. Annals of the New York Academy of Sciences, 1998, 865, 297-308.	1.8	18
64	An essential role of NFκB in tyrosine kinase signaling of p38 MAP kinase regulation of myocardial adaptation to ischemia. FEBS Letters, 1998, 429, 365-369.	1.3	221
65	Evaluation of Antioxidant Effectiveness of a Few Herbal Plants. Free Radical Research, 1997, 27, 221-228.	1.5	40
66	lschemic preconditioning triggers the activation of MAP kinases and MAPKAP kinase 2 in rat hearts. FEBS Letters, 1996, 396, 233-237.	1.3	227
67	Nitric oxide ? a retrograde messenger for carbon monoxide signaling in ischemic heart. Molecular and Cellular Biochemistry, 1996, 157, 75-86.	1.4	31
68	Molecular cloning, sequencing and expression analysis of a fatty acid transport gene in rat heart induced by ischemic preconditiong and oxidative stress. Molecular and Cellular Biochemistry, 1996, 160-161, 241-247.	1.4	8
69	Nitric oxide signaling in ischemic heart. Cardiovascular Research, 1995, 30, 593-601.	1.8	54
70	Drug-Induced Heat-Shock Preconditioning Improves Postischemic Ventricular Recovery After Cardiopulmonary Bypass. Circulation, 1995, 92, 381-388.	1.6	59
71	Improved 4- and 6-Hour Myocardial Preservation by Hypoxic Preconditioning. Circulation, 1995, 92, 417-422.	1.6	19